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Missense variants remain a challenge in genetic interpretation owing to

their subtle and context-dependent effects. Although current prediction
models perform wellin known disease genes, their scores are not

calibrated across the proteome, limiting generalizability. To address

this knowledge gap, we developed popEVE, a deep generative model
combining evolutionary and human population data to estimate variant
deleteriousness on a proteome-wide scale. popEVE achieves state-of-the-art
performance without overestimating the burden of deleterious variants
and identifies variants in 442 genes in a severe developmental disorder
cohort, including 123 novel candidates. These genes are functionally similar
to known disease genes, and their variants often localize to critical regions.
Remarkably, popEVE can prioritize likely causal variants using only child
exomes, enabling diagnosis even without parental sequencing. This work
provides ageneralizable framework for rare disease variant interpretation,
especially in singleton cases, and demonstrates the utility of calibrated,
evolution-informed scoring models for clinical genomics.

Evenifevery human were sequenced and their phenotypes recorded,
the space of disease-causing genetic variation may be too large to be
studied by population variation or disease-relevant experimental assays
alone. Patients with unique combinations of symptoms and genotypes
would still go without a genetic diagnosis'2. The biodiversity of life on
Earth provides adeeper view of genetic variation across billions of years
of evolution, presenting a unique opportunity to uncover complex
genetic patterns preserved to maintain fitness. Thus, models that can
distill such information accelerate our ability to leverage genetics for
diagnosis, prevention and treatment.

For severe genetic disorders, the task is to identify the causal
variant among millions of mutations in a patient. One powerful
approachisthe sequencing of trios—patient and their parents—which
can narrow down the pool of candidate variants to those arising
de novo when the parents are unaffected or to inherited variants
from an affected parent®*. Despite the impressive analysis of large

rare disease cohorts*”’, genetic diagnostic yield is relatively low; in
some cases, only 25% of probands receive a genetic diagnosis’. There
is aneed for alternative strategies to identify candidate causal vari-
antsdirectly froma patient’s sequencing data, without relying on the
frequency of observations in large cohorts. In this work, we present
how probabilistic modeling of diverse sequencing, in both humans
and across diverse species, can potentially aid clinical interpretation
of never-before-seen variation.

Recent work using deep unsupervised models trained only on
evolutionary sequences has shown strong promise for clinical variant
effect prediction'®™ and have demonstrated comparable accuracy
to experimental approaches". Given these models do not depend on
functional or clinical labeling, they can generalize to variantsingenes
without previous annotation. However, although these models often
perform well in terms of separating Benign from Pathogenic clinical
labels in known disease genes, they are not calibrated well across the
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Fig.1| popEVE combines deep evolution and human variation. popEVE combines variation from across evolutionary sequences, modeled with EVE and ESM-1v, with
variation within the human population (UKBB or GnomAD™), using a Gaussian process to learn the relationship between evolutionary scores and missense constraint.

entire human proteome; that is, they are not designed for comparing
how deleterious a variant is in one gene versus a variant in another.
Consequently, previous methods excel at identifying variants that
disrupt the function of the resulting protein but do not necessarily
predict whether it is detrimental at the organismal level™.

Variant severity lies on a spectrum: for instance, disruption of
functioninone protein could have modest effects late in life, while the
disruption of another protein can be lethal in childhood. Both can be
considered ‘pathogenic’ and correctly identified as such by a model,
but when attempting to find the genetic cause of a severe disorder, it
is imperative to be able to distinguish between these two scenarios.
Current state-of-the-art variant effect prediction models have not
been developed with this spectrum of severity in mind. To overcome
this problem, we developed popEVE, a model that places variants on
a proteome-wide scale of deleteriousness, enabling us to predict if a
variant seen in one gene is more detrimental to human health than
avariant seen in another. popEVE leverages deep evolutionary data
to achieve missense-resolution variant effect prediction and shal-
low variation across the UK Biobank" (UKBB) or Genome Aggrega-
tion Database (GnomAD) (v.2)*® population to transform the score to
reflect human-specific constraint. Analyzing ametacohort® of patients
with severe developmental disorders (SDDs), we find evidence for
123 candidate novel genetic disorders from their de novo missense
mutations (DNMs), which is 4.4x more than previously identified in
the same cohort, and yet significantly similar in function to known
developmental disease genes. For cases with whole-exome sequencing
(WES), we are able to identify the likely causal DNM knowledge of its
inheritance pattern. Thus, popEVE provides valuable information for
genetic diagnosis, even in the absence of trio sequencing, increasing
the scope of genetic analysis.

Results

Method development

A unified model of population and evolutionary sequences. For
a computational model to be broadly useful in human genetics, the

model scores should be continuous, have residue resolution and have
the same quantitative meaning across different proteins. Previous
state-of-the-art computational methods have excelled in various tests
of accuracy; for instance, correct classification of pathogenic and
benign labels from curated clinical databases and reasonable corre-
lations with high-throughput experiments on specific proteins'?3,
However, these benchmarks can result in overestimated accuracy
in and generalizability to real-world scenarios in which thousands
of missense variants, including hundreds of rare variants, must be
ranked across a single person’s genome. This drawback has resulted
in the understandable caution of the clinical use of computational
methods, not least from the observation of an overprediction of del-
eterious variants**2°),

Converting gene-level scores to proteome-wide scores. popEVE is
designed to provide ahuman-specific, continuous measure of variant
deleteriousness that enables comparison across different proteins
(Fig.1and Supplementary Fig.1). To achieve a score that reflects con-
straint within humans and distinguishes the relative impact of individ-
ual variants, we reason thatamodel would need to not only learn from
deep evolutionary variationbut also from shallow variation observedin
the human population. While deep evolutionary variation fromacross
life caninformus about whatis allowed for a protein to function, mod-
elstrained solely on thisinformation cannot necessarily learn the rela-
tiveimportance of one protein versus another. We build a unified model
that predicts the effect of a variant in the population, conditioned on
the underlying evolutionary scores using a latent Gaussian process
prior, similar in spirit to gene-level and region-level estimates of mis-
sense constraint”’~°. The model trains on the universe of sequences
across evolution together with summary statistics of human variation
from human population data. For the deep evolutionary sequence
analysis, we combine a state-of-the-art alignment-based model, EVE",
and a large language model, ESM-1v*'. Although the two models
have comparable performance on clinical and deep mutational scan
benchmarks, variant scores are not particularly well correlated®
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Fig. 2| popEVE captures variant severity and pathogenicity. a, Clinvar
pathogenic variants in phenotypes associated with premature death in childhood
have more deleterious popEVE scores than those associated with death after
maturation (left). Death labels were acquired from OrphaNet. At the fifth
percentile of ClinVar benign variants, popEVE has asignificantly larger odds ratio
than any other method (right). b, Variants associated with onset in childhood
have more deleterious popEVE scores than those associated with onset later
inlife (left), and popEVE has a greater odds ratio than other methods (right).

¢, popEVE scores for DNMs in SDD cases (top) and diagnosed cases (bottom) are
shifted towards the deleterious end compared to controls (unaffected siblings

from autism spectrum disorder family cohorts). d, Using DNMs from both

SDD cases and controls, we define a severely and moderately deleterious score
threshold by fitting a two-component Gaussian mixture model and finding the
99.99% and 99% likelihood of being in the more deleterious distribution. e, With
increasingly pathogenic thresholds, de novo mutations in the SDD metacohort
aresignificantly enriched (top). At our severely pathogenic threshold, popEVE
pathogenic variants exhibit over 15-fold enrichment, while popEVE benign
variants are in line with expectation (bottom). Moderately pathogenic variants
are enriched fivefold. The expected number of variantsis quantified using a
background mutation rate based on the number of individuals in the metacohort.

(Extended Data Figs. 1-3), indicating useful orthogonal evidence
of variant fitness. popEVE scores are enriched in haploinsufficient
genes compared toloss-of-function (LoF) tolerant ones, and, toalesser
extent, in genes with dominant versus recessive inheritance patterns—
consistent with its adjustment for constraint (Supplementary Fig. 2).
These scores correlate more strongly with missense-based constraint
metrics than those based on LoFs (Spearman’s p, 0.52 Missense-Z*’,
0.44 pLi*®, P<0.001; Extended Data Fig. 5 and Supplementary Tables 2
and 3). Tobebroadly useful, avariant scoring method should generate
missense-resolution scores across the genome that reflect not only
pathogenicity, but also the magnitude of the effect on protein fitness
and the resulting phenotype. Our framework leverages population
variation to calibrate scores across genes, while performing com-
petitively with leading methods on within-gene benchmarks, namely,
ClinVar classification and DMS correlation tasks (Extended Data Figs.2
and 3 and Supplementary Table 1). Importantly, because population
datais only used to re-rank variants across genes, internal rankings
within genes remain largely unchanged. This allows the population
adjustment to be safely incorporated into annotation pipelines that
treat allele frequency as an independent evidence source. Standard
benchmarks typically emphasize binary classification: determining
whether a variant is benign or pathogenic within a single gene. While
thisis useful for some clinical decisions, it fails to capture variationin
disease severity.

popEVE shows limited to no population bias. A disadvantage of using
populationdatais thatit canintroduce populationstructure bias*. To
mitigate this limitation, we use a coarse measure of missense variation
(‘seen’ or ‘not seen’) rather than using allele frequencies. As such, the
presence of arare variantin asingle personin the training population

is treated the same as the presence of a common variant in the vast
majority of people. We find that popEVE score distributions of rare
variants (minor allele frequency (MAF) < 0.01) are similar across various
ancestriesin GnomAD (v.2)"® (Extended Data Fig. 4). Our results are sup-
ported by an independent analysis of ancestry bias in variant scoring
methods, which found that popEVE shows minimal bias towards Euro-
pean ancestries, in line with population-free methods®. By contrast,
state-of-the-art competitors, including AlphaMissense’, BayesDel*
and REVEL**, show significant bias towards these populations®.

popEVE captures variant severity and pathogenicity
Distinguishing pathogenic variants based on phenotype severity.
First, we tested whether popEVE can distinguish variants causing severe
clinical outcomes—such as childhood-onset or fatal disorders**—from
those with more moderate effects. popEVE scores significantly separate
childhood death-associated variants from adult death variants bet-
ter than all other methods (P < 0.001; Fig. 2a, Extended Data Fig. 6a,
Supplementary Fig. 3 and Supplementary Table 4). A similar, albeit
weaker, pattern holds for age of onset (Fig. 2b, Extended Data Fig. 6b
and Supplementary Fig. 4). This suggests popEVE captures variant
severity in disease. Notably, it outperforms models tuned to allele
frequency (for example, AlphaMissense, BayesDel) and those trained
on clinical labels (for example, REVEL, Vest4). While those methods
correctly classify most variants as potentially pathogenic, they lack
theresolution that popEVE provides for distinguishing severity (Sup-
plementary Figs.3 and 4).

Deleterious scores are enriched in SDD. To evaluate how well pop-
EVE captures variant severity, we compare de novo missense variants
in SDD cases (n =31,058) to those in unaffected controls from Autism

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-025-02400-1

a Variation in the general population b Diagnosed cases vs controls (de novo)
5 1.00
® ® 3-1n=6
g 2 Heterozygous % 2 n=503n=9
< g »n 14 0.96 —
c 5 1()‘k Zbk c
S 3 3 0 8
o 5 2 g
Q ) o 5 n=4 g v
= 2 Py o
g | 8 adn-97 &
< ©
£ 4 S| © 34n-1626 POpEVE (0.97)
@ > 3 0.88 = A|phaMissense (0.94)
@ Homozygous s 27 |n=1
>
0 1n=2248 ‘ ‘ ‘ ‘
T T T T
-5.5 -5.0 -4.5 -4.0 0 50k 100k 150k 0 0.2 0.4 0.6 0.8 1.0
pOopEVE threshold People Adjusted recall
c 100 d f 100
P 1.0+ Inherited POPEVE
g > 0.8 AlphaMissense
2 i ?
g 80 c 0.6 £ 80
RS & 0.4 5
)
2 0.2+ Denovo Q
8 60 | 0 ‘ : ‘ 2 60
5 8 -6 -4 -2 0 3
3 PopEVE g 100% of
c | g
2 40 e More deleterious Less deleterious 8 40 ~|diagnosed
5 than diagnosed than diagnosed k) cases,
— o
] PopEVE S
€ 204 —
S PODEVE AlphaMissense g 20
o AlphaMissense L
° BayesDel noAF
o
REVEL
0 T T T T 0 —F T T T T
0] 20 40 60 80 100 0O 25 50 75 100 0] 20 40 60 80 100

Percent of general population

Fig.3 | popEVErecalls severe genetic disorder cases without overpredicting
pathogenicity in the general population. a, In the UKBB, individuals

have at most one homozygous and up to three heterozygous severely
deleterious variants; 96% of the 500k individuals have no severely pathogenic
missense variants (left). Approximately 72% of UKBB individuals have no
severely or moderately deleterious variants and at most five moderately
deleterious variants (right). b, popEVE is better at separating diagnosed

DD cases from controls based on DNMs than other state-of-the-art variant
effect predictors with an average precision of 97%. Recall is adjusted based

on the expected number of these cases to have a causal missense DNM
(Methods). ¢, popEVE recalls more SDD diagnosed cases based on their

DNMs without overpredicting pathogenicity in WES from relatively

healthy controls from UKBB (gnomAD-trained popEVE).d, DNMs in

Percent of gen pop

Percent of general population

SDD cases from the DDD Study are enriched for pathogenic variants
incomparison to their rare inherited variants (MAF < 0.01) (two-sided
Kolmogorov-Smirnov = 0.24, P< 0.0001). e, To recall 100% of de novo
missense-diagnosed cases using their WES, popEVE predicts that far less of
the general population will have a similarly deleterious variant than any other
model. f, When applied to WES from a subset of the SDD cases, popEVE recalls
more cases than other models without overpredicting pathogenicity in the
general population of UKBB (using gnomAD-trained popEVE). Additionally,
popEVE recalls 100% of cases expected to have a causal missense DNM for
only 15% of the remaining cases and 16% of the general population (circles).
Other models find that >78% of the UKBB has a variant as deleterious as these
cases (inset).

Spectrum Disorder cohort trios (n = 5,764)*° and the UKBB" (n=500k)
(Supplementary Table 5). popEVE scores in cases were consistently
shifted toward higher predicted deleteriousness (Fig. 2c, top). These
DNMs showed increasing enrichment at more severe scores, exceed-
ing expectations based on background mutation rates (Fig. 2d, top).
Among diagnosable SDD cases (n = 2,982, per a previous publica-
tion®), this shift is even more pronounced (Fig. 2¢, bottom). Using a
label-free two-component Gaussian mixture model on all variants,
we set a high-confidence severity threshold at -5.056, where variants
below thisthreshold have a99.99% of being highly deleterious (Fig. 2e).
Variants below this threshold are 15-fold enriched in the SDD cohort—
five times higher than other methods like PrimateAl-3D asreportedin
Gao et al. (2023)* (Fig. 2d, bottom). Moderate-scoring variants also
show fivefold enrichment. Both severe and moderate case variants are
absent from UKBB and gnomAD, while severe-scoring UKBB variants
are extremely rare (Fig. 3a).

Distinguishing SDD cases from controls. To assess performance
at ranking variants across the proteome, we tested our model’s abil-
ity to separate DNMs from missense-diagnosed SDD cases from

popEVE
Known

Novel

Variant level

Known in
cohort

Gene level

Fig. 4| popEVE finds evidence for 123 novel candidate genes in SDDs.

Both popEVE gene and variant-association methods achieve 94% recall

of genes previously discovered in the cohort® with solely missense variation.
Thereisagreater overlap between popEVE gene collapsing and this previously
discovered set than the thresholding approach, owing to the similarity in

their approach.
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Fig. 5| Deleterious scoring variants lie in 3D interaction sites of candidate
genes. A total of 91% of our defined deleterious variants are within 8 A (72% are
within 5 A) of aninteraction partner. a, ETF1(eRF1), a gene crucial for protein
synthesis, contains our two most deleterious scoring variants (R192C and
R68L), both close (<3.2 A) to the ribosomal phosphate backbone (PDB 6D90
and PDB 7NWH) and are proximal to known functional motifs; R68 is part of the
NIKS motif that determines stop codon recognition, and R192 to the GGQ motif
that triggers the hydrolysis of the peptidyl-tRNA ester bond. b, Q60 in EIF4A2

NuRD chromatin complex
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(DDX2B) is <2 A from the N6 of the adenine of phosphoaminophosphonic
acid-adenylate ester (ANP). ¢, Many deleterious scoring variants are in the NuRD
chromatin complex, such as M31R in HDAC2, whichis 3.4 A from the histone
mimicinhibitorin3MAX, and H37R in RBBP4, which is 3.8 A from MTAL in
4PCO0.d, The calcium-gated ion channel complex contains deleterious scoring
variants in key interaction sites, 1637F in KCNN2 in the highly conserved T(V/I)
GYG K’ pore motif, and D24Y in CALM1, which chelates the Ca* in the wild type
(homologous complex structure PDB 6CNN).

those in unaffected controls. popEVE performs better than all other
state-of-the-art models at distinguishing diagnosed cases from
healthy controls, improving average precision by 3.2% over the next
best model (Fig. 3b). Notably, popEVE differentiates diagnosed cases
from controls better than variant scoring methods that train directly
onclinicallabels that likely include diagnostic variants fromthese cases
(Fig.3b, Extended DataFig.7a,b and Supplementary Table1).Indeed, an
independent analysis supports popEVE as the leading variant scoring
method inidentifying likely causal variants in SDD cases'.

Recovering cases without overpredicting severity. A severity-aware
modelshouldrank variantsin severe disorder cases asmore deleterious
thanthoseinindividuals with milder, complex conditions. As such, we
compared the models’ abilities to distinguish developmental disorder
(DD) cases likely to be caused by asingle missense DNM from generally
healthy individuals from the UKBB" (Fig. 3c and Extended DataFig.7c).
Atincreasingly stringent thresholds, popEVE recovers far more diag-
nosed cases without overpredicting severity in the general population.
Forexample, popEVE canrecall 50% of diagnosed cases while predicting
only 11% of UKBB individuals to have equally severe variants. By con-
trast, AlphaMissense canidentify 50% of cases but predicts 44% of the
general population carries such variants, averaging five ‘pathogenic’
hits per person, compared to far less than one for popEVE.

As a final assessment, we tested how well models differentiate
SDD cases from controls using their WES, including both inherited

and de novo variants. Inherited variant scores resemble those in UKBB
participants, while DNMs are shifted toward higher predicted severity
(Fig. 3d). For cases with WES, popEVE shows a near 1:1 case-control
separation, except at the most deleterious thresholds (Fig. 3e,f and
Extended Data Fig. 7d). Other models overpredict severity in the gen-
eral population, classifying nearly all UKBB individuals as harboring
variants as severe as half of the SDD cases. Once again, popEVE outper-
forms others by recovering more true cases with fewer false positives.

Evidence of 123 novel candidate DD genes
Givenits performance across the various benchmarks and lack of biases,
popEVE appears uniquely suited for use in clinical genetics settings to
identify candidate variants. We first investigated popEVE’s utility in
discovering novel variants and genes in the SDD cohort, comprising
31,000 trios in total (Supplementary Table 5).

Candidate discovery. We used two approaches to identify associa-
tions: thresholding variants with a>99.99% likelihood of falling within
the low-fitness distribution; and gene collapsing, comparing observed
variant scores to expectations based on background mutation rates
given the spectrum of scores within and across proteins (P<2.71x107%;
Methods). This yielded 410 genes, including 152 previously reported
by DeNovoWEST® (Fig. 4 and Supplementary Table 6). popEVE recov-
ers 94% of missense-identified genes previously found in this cohort,
and over half (135) are supported by the Developmental Disorder Gene
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Table 1| Top 25 most deleterious novel candidates

Gene Mutant Score PDBID Interacting Partner Distance (A)
ETF1 R192C, R68L -12,-6.8 7NWH, 5A8L 18S ribosomal RNA 16,27
RBBP4 H373R -6.8 4PCO Metastasis-associated protein MTA1 3.8
WDR5 S62N -6.8 2GNQ

UBE2D3 S105Y -6.7 7AHZ Ubiquitin 2.2
EIF4A2 Q60K -6.6 6B4K ANP 1.8
ANP32A L8OR -6.4 6XZQ

UBE2H D120V -6.2 6ZHS Ubiquitin-activating enzyme UBA1 20
XPOT1 T448K -6.2 4HB3 Ran (GTP-binding nuclear protein Ran) 2.9
AMIGOT1 L112P -6.1 2XOT

COPS2 F69C -6.1 6A73 Inositol hexakisphosphate (InsPg) 6.5
RBBP4 T1551 -6.0 2XU7 Zinc finger protein ZFPM1 2.9
RBBP7 N325D -6.0 5FXY Metastasis-associated protein MTAT 3.3
DDX17 VA84M -5.9 3EX7 ATP 6.4
SPIN1 Y170C =58 70CB Histone tail 2.4
WARST G163V -5.9 4)75 TRP-AMP 2.7
MAT2A S206F -5.9 7KCF SAM (S-adenosylmethionine) 25
KCNN2 1637F -5.8 6CNM K*ion 27
ZMYND8 R333G -5.8 5Y1Z Actin-binding protein Drebrin (DBNT) 6.6
ACTC1 S340F -5.8 7137 Fragmin (actin-binding protein) 47
RBBP4 R131C -5.8 4PSX Sulfate ion 2.6
PSMA2 G125D -5.8 5L4G Proteasome subunit PSMA6 2.9
MAP2K4 S262N -5.8 7JUY ANP 26
NFKB2 W270R -5.8 7vuQ

CALM1 D24Y -5.8 6B8Q Ca*"ion 2.0

to Phenotype (DDG2P) database®. We highlight 123 of the genes as
novel candidates, 119 of which were identifiable at the single-variant
level (Supplementary Table 7). None of these variants were observed
in UKBB or GnomAD individuals. Notably, during the review process
of this publication, 25 of these candidates have since been added to
the DDG2P (accessed 4 September 2025). A total of 31 genes were
recovered using missense variants alone that previously required LoF
data. Of the 50 known genes recovered only via collapsing, many had
moderate scores, underscoring the value of this combined approach.
To assess false positives, we applied gene collapsing to unaffected
controls—no significant genes were found. Among controls, 18 variants
were predicted as severe, including one linked to Long QT and Brugada
syndrome?®**, which can cause sudden deathin midlife (rs199473072).
Variant thresholding flagged 7% of missense DNMs in cases to be severe
(4.5% of patients), compared to just 0.5% in controls (0.2% of individu-
als). These results suggest that variant scores alone areinformative and
support using both methods when possible.

Case variants lie in 3D interaction sites. Since our method pinpoints
individual variants that may be causal, it allows us to explore their 3D
context where protein structures are available (85 out of 100 unique
proteins*°). Although we do not use any 3D structures as part of the
modeling, we find that these candidate variants are close to interact-
ing biomolecules, thus plausibly affecting the protein’s function.
We found that 91% are within 8 A (72% within 5 A) of an interaction
partner, such as another protein, a metal, ligand, cofactor or nucleic
acid, and are >90% closer to an interacting partner than any other
random positionintheir respective protein (Methods). For example,
the two candidate variants scored most deleterious by popEVE are in
ETF1,aprotein that mediates translation terminationin the ribosome.

R192C and R68L are both close (<3.2 A) to the phosphate backbone of
RNAinthe 80S-eRF1-eRF3-GTP ternary complex (Fig. 5aand Table 1),
PDB 6D90 (ref. 41). Both these residues are proximal to known func-
tional motifs: R192 to the GGQ motif that triggers the hydrolysis of the
peptidyl-tRNA ester bond, terminating protein synthesis*?, and R68 is
part of NIKS motif, crucial for stop codon recognition*. Many other
deleterious variants are associated with translation, such as Q60 in
EIF4A2, whichlies <2 A from the ANP (Fig. 5b). Other top-scoring vari-
ants are in members of the NuRD complex** include H373 in RBBP4,
whichis3.78 A from MTAL; and M31in HDAC2, whichlies directly in the
‘foot pocket’ of the acetylase active site*, <2.5 A (Fig. 5¢). Finally, we
also see highly deleterious variantsin two interacting proteins; 1637in
the T(V/I)GYG motif essential for ion transporter KCNN2 and D24 that
binds calciumin CALMLI (ref. 46) (Fig.5d). The enrichment of variants
closeto theligands and the numerous examplesin the top candidates
of common complexes suggests their plausibility, examined in more
statistical depth below.

Functional analysis supports candidate genes. Three lines of evi-
dence provide support for new candidates. Firstly 70% of the 410 genes
identified using popEVE in the SDD cohort are already known to be
associated with DDs (P < 0.001 compared torandom; Methods, Fig. 4)
and the score distribution of variants seen in cases in the candidate
genes is nearly identical to those in known genes (Fig. 6a). Secondly,
the remaining 123 newly identified proteins are hugely enriched for
direct physical interactions with the 285 previously identified from
the same cohort® (two-sided t-test, P= 0; Fig. 6b, Extended Data Fig. 9
and Supplementary Table 10). This includes 25 variants in 15 proteins
from chromatin complexes (for example, NuRD and Sin3a), including
HDAC2/5,RBBP4/7 and IKZF1 (Fig. 6¢).
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modeling.d, Novel (n =123) and known DD genes (known in cohort n =280,
knownin literature n = 2,235) show similar enrichment in properties known to
differentiate known DD genes from non-DD genes (bar values show log ratio
of meaningene set of interest to mean of non-DD genes; error bars show 95%
Clfrom bootstrapping with 1,000 simulations). RPKM, reads per kilobase

of transcript per million mapped reads; GO, Gene Ontology; MF, molecular
function; BP, biological processes; Extended Data Fig. 8.

Thirdly, the candidates are functionally similar toknown DD genes
across a wide range of features that are known to distinguish these
genes from those not associated with DDs (Fig. 6d, Supplementary
Table 8 and Extended Data Fig. 8). For example, candidate genes are
expressed significantly more in the developing fetal brain compared
tonon-DD genes, even those already known to be associated with DDs
(P<0.001); they have similar enrichment for molecular function and
biological processes***®as known DD genes, such as chromatin organi-
zation (GO:0006325) and nervous system development (GO:0007399)
(Supplementary Table 9); 50 out of 123 novel genes are associated with
acomplexinvolved in development and survival of neurons (NRTK1);
16 out of 123 with the SWI/SNF chromatin remodeling complex associ-
ated withneurodevelopmental disorders***°; and another15areinion
channel complexes®'. Of the 24 remaining genes with no connectiv-
ity, two-thirds are significantly enriched in annotations for neuronal
development and differentiation (Supplementary Table 9). Addition-
ally, novel candidate genes are enriched for essential genes measured
both by homology to mouse experiments®, by large-scale CRISPR
screens®’, somatic driver genes* and haploinsufficient genes>, and are
significantly depleted of genes that are tolerant to homozygous LoF.

These lines of evidence, taken with the low potential to overpredic
severity in the general population (above), support these novel genes’
candidacy for their involvement in SDDs.

Pinpointing likely causal de novo variants without

parental genomes

Finally, we tested whether popEVE can identify likely causal variants
fromthe child’s genome alone, without parental data. We analyzed rare
(MAF < 0.01) inherited and de novo variants in 9,859 individuals from
the Deciphering Developmental Disorders® (DDD) cohort. For 2,700 of
these cases, acausal missense DNMis expected. Among 513 individuals
with a popEVE-severe de novo missense, 98% had this variant ranked
astheirmost deleterious. Selecting the top-scoring variant per person
stillrecovers 95% of genesidentified by thresholding de novo variants
alone. Compared to other models, popEVE morereliably ranks causal
de novo mutations above all rare inherited missense variants in the
same patient (Fig. 7a and Extended Data Fig. 7f). This highlights pop-
EVE’s clinical utility: when a likely causal de novo variant is present, it
will more often be ranked as the most deleterious, outperforming all
other models across the proteome.

Withrespect to new candidates that may be inherited, in addition
to identifying DNMs without parental data, we found 409 inherited
variants across 209 genes predicted to be severely deleterious; only
oneappearsinthe UKBB (Fig. 3f). These genes show strong enrichment
for physicalinteractions (two-sided t-test, P = O; Extended Data Fig. 9c
and Supplementary Table 10) and functional similarity to known DD
genes (Fig. 6d). Among them, 36 are already associated with DD, and

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-025-02400-1

100 b

N De novo
B Known
@ Novel

80

60

30, 19

\

POPEVE N 89 | |52

S
Alpha missense ~—

40 +

20 +

REVEL
o T T T T

0 200 400 600 800 1,000
Cases with a de novo missense

Percent with de novo variant @
as most deleterious

Fig. 7| popEVE recalls candidates without parental genomes. a, popEVE ranks
missense DNMs in known DD genes as most deleterious compared to their
inherited variantsin diagnosed SDD cases, better than any other model. b, Genes
identified using DNMs compare with those identified using inherited variants.

Inherited
B Known

0.04

Novel - 0.8

0.03 -
- 0.4

0.02 4 . i . o

6 -4 -2 0

Density

POpEVE novel
Known in cohort
Known in literature

0.01

T
-6.0

popEVE

T
-7.0
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have a similar distribution of whole-exome case variants as compared to DD
genesidentified elsewhere, particularly at the deleterious end (inset shows entire
distribution of scores).

29 overlap with novel genes from the full SDD cohort. Case variantsin
these candidates show popEVE score distributions comparable to those
inknown DD genes (Fig. 7c). While many cases are likely explained by
missense DNMs, inherited variants may also contribute. Notably, in
the original trio analysis, 84% of flagged variants were inherited, the
majority being missense mutations®.

Discussion

As patient sequencing becomes standard, with growing accessibility
worldwide, thereisincreasing demand for broadly applicable variant
interpretation tools—even for cases involving diseases as rare as one
patient. While standard burden analyses work when enough individuals
share arare disease, many ultra-rare conditions lack sufficient cases.
This work introduces a model designed to support genetic diagno-
sisin such cases. Recent years have seen arise in models predicting
whether variants are benign or pathogenic, but most overlook dif-
ferences in severity and penetrance. Here, we propose that treating
pathogenicity as aspectrum can be more informative in certain con-
texts. Capturing this spectrum requires a model that ranks variants
both within and across genes, that is, a true proteome-wide model.
While several models offer genome-scale predictions, popEVE is, to
our knowledge, the first designed specifically to calibrate scores to be
comparable across genes, making it the first, albeit simple, model of
the human proteome. Advancing whole-proteome modeling requires
several key developments. A natural next step is to incorporate pro-
tein—-protein interactions, just as protein-level models evolved from
position-independent to interaction-aware frameworks. Another clear
limitation of current models, including popEVE, is their inability to
evaluate nonsense or truncating mutations and, thus, are unable to
compare their severity to missense variants. To our knowledge, no
unified model of LoF and missense variants with sufficient predictive
power currently exists. However, popEVE’s modular design makes it
compatible with such extensions, as its human proteome calibration
isagnosticto the variant type and can be easily expanded. Despite the
simplicity of popEVE, it presents multiple opportunities for diagnosis
and broader exploration of disease genetics. We identify novel DD gene
candidates undetectable by enrichment-based methods in a cohort
of this size; 104 have flagged variants in only one or two individuals.
Functional, structural and network analyses show these genes are
closely linked to known DD genes, and their variants often occur in
functionally critical regions, providing further evidence that these vari-
ants potentially give rise to genetic disorders. More broadly, the model
predicts that a large number of genes are capable of causing severe
phenotypes, implying that there are stillmany genetic disorders yet to
beidentified or even seen. A similar conclusionis reached in Kaplanis
etal.®throughadistinctapproach. Here, we go further by identifying
specificgenes and high-risk variants. Finally, we note the detrimental

impact of building large-scale proteome or genome models; we are
reaching a point where the energy and computational consumption
of developing and training these models is costly, both financially and
environmentally®’. In this work, we sought to use amodular approach,
enabling us to repurpose previous models and update components
of the model with future developments at a minimal computational
cost. Deep learning strategies with these properties are currently
scarce, and we urgently need more techniques that lend themselves
to reducing computational costs or have components that can be
readily reused or recycled.
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Methods

Statistics and reproducibility

This study is based on analysis of large-scale sequencing and variant
annotation datasets (UniRef*®, UKBB", gnomAD'®, Clinvar®’, Prote-
inGym? and DD cohorts, including DDD?, GeneDx®, Radboud®, SPARK*®
and SSC*). No statistical method was used to predetermine sample
size; all available data from each cohort or resource were included in
the analyses. No datawere excluded fromthe analyses unless explicitly
stated in the Methods (for example, sibling pairs with shared de novo
variants, or genes with insufficient coverage in UKBB). The experiments
were not randomized. The investigators were not blinded to allocation
during experiments and outcome assessment. Reproducibility was
assessed by benchmarking across multipleindependent datasets (Clin-
Var, deep mutational scans, population sequencing cohorts and DD
cohorts) and by comparing results with previously published models.
All code and trained models are publicly available (‘Code availability’),
ensuring that analyses can be reproduced.

Dataacquisition

Multiple sequence alignments. Following previously published
protocols®®™, the EVCouplings pipeline®, which builds on the profile
HMM homology search toolJackhmmer®*, was used to build multiple
sequence alignments (MSAs), in which sequences were obtained from
the UniRef100 database of non-redundant protein®, downloaded in
March2022.

Human variation data

Variants from the UKBBY 500k release were annotated using VEP
GRCh38 RefSeqand a custom RefSeq annotation built from NCBIgen-
ebank files to maximize the number of variants for pre-existing models.
Variants were filtered for genotyping quality across all samples, and
annotations were filtered based on matching between the RefSeq ref-
erence sequence and transcript sequences. When analyzing variants
seen in the UKBB outside of training, we removed genes in which less
than 95% of UKBB participants had at least 10x coverage®.

DD cohorts. All cohorts included in this study obtained written,
informed consent from all participants or, if the participants were
minors or lacked capacity, from their parents or legal guardians, in
accordance with relevant institutional and national ethical guidelines.

SDD metacohort. De novo mutations from a metacohort composed
of subjects from the DDD study, GeneDx and Radboud Medical Center
wereacquired froma previous publication® (n = 31,058). Quality filter-
ing was performed by the respective centers as described in the sup-
plement of the original publication®. The variants were re-annotated
with VEP using GRCh37 RefSeq and custom mapping based on NCBI
RefSeq assembly mappingfiles.

Autism spectrum and unaffected siblings metacohort. De novo
mutations from SFARI’'s SPARK and SCC cohorts (the other two cohorts)
were acquired from previously published work*® (n = 5,764). The vari-
ants were re-annotated with VEP using GRCh37 RefSeq and custom
mapping based on NCBI RefSeq assembly mappingfiles. Sibling pairs
with shared de novo variants were discarded.

DDD cohort. Variants from WES for the DDD cohort, a subset of the
SDD metacohort (n =9,859), were re-annotated with VEP using GRCh37
RefSeq and custom mapping files. Variants were filtered by quality
based onthefilters used in the previously published SDD metacohort®.

ClinVar benign and pathogenic variants. To assess predictive per-
formance, we used two sets of clinically labeled variants from the
ClinVar public archive®’: the 2019 and 2020 sets curated in a previous
publication®.

Deep mutational scans from ProteinGym. For assessing the pre-
dictive performance based on correlation with high-throughput
functional assays (otherwise known as deep mutational scans or
multiplexed assays of variant effects), we consider the human subset
of ProteinGym?, which is thought to be clinically relevant. As refer-
ence sequences must have mappings to the human reference genome
GrCH38, we donot have sequence matches for all available assays. Thus,
theresulting test set consists of 23 assays across 18 proteins, soamod-
estexpansion of the set considered in the previous work™.

Model building

Overview of modeling strategy. From a methodological perspec-
tive, our goalistorank the severity of genetic variant effects across an
individual’s proteome. To achieve this goal, we developed a probabil-
istic model trained on protein sequence data from both diverse spe-
cies (UniRef100) and human populations (UKBB or gnomAD). These
datasets offer complementary advantages: cross-species sequences
reflect millions of years of evolution, revealing conserved patterns
linked to structure and function”, while human exome data captures
population-specific constraint at the gene level. By combining both,
our model aims to accurately predict variant impact across the pro-
teome at single-residue resolution.

Inthe following sections, we firstintroduce the models (referred
to here as evo models) used for identifying patterns of conservation
across diverse organisms. These models provide a ‘fitness’ score for a
given sequence of interest by obtaining an estimate for the log odds:

7=o8 (p(x‘ef)

where x represents the sequence of interest and x™ is the reference
sequence.

We introduce popEVE, a model that predicts the presence or
absence of a variant in the human population based on input fitness
scores from underlying models. It produces a calibrated score that
effectively rescales and ensembles these inputs, enabling comparison
of variant effects across different proteins.

Modeling individual proteins using evolutionary data. Recent work
has shown that unsupervised models trained on protein sequence
distributions across diverse species can distinguish benign from
pathogenic variants in known disease genes, performing compara-
bly to functional assays™**. We use two subtypes of such models: an
alignment-based model, which is a variational autoencoder, trained
onMSAs ofindividual genes; and an alignment-free model, inspired by
large language models, trained on a full protein database (UniRef90).
Below, we summarize each approach.

TheBayesianvariational autoencoder (EVE). Variational autoencoders
(VAEs)®*“areaclass of latent variable models that have been shown to
be effective at capturing high-dimensional distributions in computer
vision®”®, natural language processing®® and more. The assumption
underlying a VAE is that the observed high-dimensional distributionis
generated by amuch smaller number of hidden (also known as latent)
variables z;. The generative story is thus:

z ~ N(0,1p)

. )
p(x¥2,0) = softmax((fo@))),

where x? is an indicator function for the presence of amino acid a at
position i, and the ‘decoder’ f°(z) is modeled with a fully connected
neural network, with spherical Gaussian prior for the parameters 6. In
words, the VAE models the conditional probability of seeing the amino
acid aat positioni, giventhe latent variables z. Parameter inference is
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achieved by the use of amortized inference, where we model the dis-
tribution g(z|x;, @) with another fully connected neural network, often
referred to as the encoder. In previous work™ we found a symmetric
relationship between encoder and decoder to work well with three
layers, consisting 0f2,000-1,000-300 and 300-1,000-2,000 nodes,
respectively.

To score a sequence, we use the evidence lower bound (ELBO),
whichis alower bound on the log-marginal likelihood p(x):

ELBO(X) = Neﬁn[Ep(x)

[[Eq(ep),q(z\x) (Ing(X|Z, ep)) - DKL(q(le’ ¢p) ” P(Z))] - DKL(q(ep) ” P(Gp))
3

N

where Neg = 3,_, w¢ and wy is defined in equation (5). The fitness

n=1
scoreis thensimply
x10,
o=log p(—lfp) ~ ELBO(x) — ELBO(x™) 4)
p(x|6p)

Sequence reweighting. All models used in this work make the false
assumption that the training data is independently and identically
distributed. This independently and identically distributed assump-
tion breaks down owing to phylogenetic and ascertainment biases.
Thefactthatthe VAEistrained onaligned data presents an opportunity
to correct for these two biases with sequence reweighting. Following
theapproachdescribedin previous work’™, we re-weight each protein
sequence x;froma given MSA accordingto the reciprocal of the num-
ber of sequences in the corresponding MSA within a given Hamming
distance cutoff, T.

N
we, = X

m=1

1[Dist(x,, Xp) < T (5)

m#n

where Nis the number of sequencesinthe MSA, and bold, lowercase x
represents a protein sequence, indexed by subscript Latin indices. As
in previous work®®, we set T= 0.2 for all human proteins.

Masked language model (ESM-1v). The transformer architecture has
enabled the training of single, alignment-free models of essentially all
known proteins. In this work, we make use of ESM-1v*, which is trained
on UniRef90.

ESM-1v*isahigh-capacity 650 million parameter language model
that uses a form of self-supervision known as masking. During train-
ing, eachsequence hasarandomly sampled fraction of itsamino acids
replaced with a‘mask’ token, and the network s then trained to predict
the amino acids that have been masked. For each masked amino acid,
the negative loglikelihood of the missing amino acid, conditioned on
the sequence context, isindependently minimized.

£ =EexEy Y, —10g p0x;|x)p). (6)
ieM

Hence, for the model to successfully perform this task, the depend-
encies between the masked amino acid and the unmasked sequence
context must be learned.

Estimating variant-level constraint in humans using Gaussian
processes

The models described above perform well for ranking variants within
agiven gene but are not effective at comparing variants across genes
(Fig. 1 and Supplementary Table 1). This limitation is expected,

particularly for alignment-based models, which are trained inde-
pendently for each coding region. Although several models provide
genome-wide scores (for example, Fig. 2e), none have been explicitly
designed torank variant severity across the proteome. To address this
gap, we introduced popEVE, the first model aimed at proteome-wide
comparison of missense variant effects.

Similar to above, we define the evo score from one of the evo
models, whichwe index A, with 4 € {1,2}, as the log odds between the
sequence of interest x and some reference sequence X,

P )
A=l . 7
o8 (pA(x'ef> @

Inwhat follows, sequences that differ from the reference sequence by
asingle amino acid substitution have aspecial role, soitis convenient
todefine (o‘}): asthescore frommodel A for a proteinsequence, which
differs from the reference x'¢f sequence for protein nsolely by having
amino acid a at position i.

We expect the probability of observing a sequence in the pop-
ulation to depend, in a fairly simple manner, on the score from the
underlying evo models. We adopt a simple Bayesian, non-linear,
non-parametric approach to modeling this relationship, with the use
ofaBernoullilikelihood and alatent Gaussian process. Specifically, we
model the presence or absence of the variant in the UKBB as:

PR(Y¥|o%) = Ber (V% 10(fr(02))) ®8)

where y; € {1,0} indicates the presence or absence of a variant in the
UKBB, thelink function ¢ (-) is the inverse logit function (also referred
to as the logistic function) ¢(2) = exp(z)(1 + exp(z))”"* and the function
fi(o)is drawn from a Gaussian process prior:

flo) ~ GP(m(0), X(0,0)), (]

with zero mean function m(o) = 0 and radial basis function kernel

X(0,0') = exp (—y(a - a’)z) . (10)

Theinferred function f}(o)canbe thought of as anew fitness score.
The intuition is that by modeling the amount of variation seen per
protein in the UKBB or gnomAD, f(0) it essentially rescales the evo
score gitoaccount for the degree of constraint acting on a per-variant
basis in the population, and how that constraint depends on a7}; thus
resulting in a score that can rank the pathogenicity of variants across
different coding regions.

Efficient function inference by restoring conjugacy with Pélya-
gamma data augmentation. For each protein of interest, indexed n,
and each underlying evo model, indexed A, we seek to infer the func-
tions f2. To do so, we consider the scores of all possible single amino
acid substitutions in that protein and their corresponding labels y7,
indicating if that variant has been observed, or not, in the UKBB
(we also provide a version of the model trained on gnomAD instead
of the UKBB). Dropping the indices n and A for compactness, we
denote the training data as the set of scores ¢ = [d}, ...,0}°] € RY and
¥ =Dn...ox] €1{0,1}¥, where L is the number of amino acids in the
protein and N=19L is the total number of possible single amino acid
substitutions. Letf=[f,, ..., fyl be the function values corresponding to
theinput g, thenequation (8), together with the Gaussian process prior
for f,implies:

p(fly,0) x p(¥| fip(flo), (11)

where p(fle) = N(f]0, Kyy) With K,y denoting the kernel matrix evaluated
atthetraining points. Therefore, in contrast to models with a Gaussian
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process prior and a Gaussian likelihood, inferenceis analytically intrac-
table because the Gaussian prior is not conjugate to the Bernoulli
likelihood.

One appealing approach to overcomingthisissueis tointroduce
additional latent variables that restore conjugacy. Following previous
work”, weintroduce the auxiliary variables @ and define the augmented
likelihood to factorize as:

p(y, @) = p(Y| f, w)p(w) (12)

The goal thenisto find a prior p(w) to satisfy two properties: that when
marginalizing out w, the original modelis recovered; and the Gaussian
prior p(f) is conjugate to the likelihood p(y|f, w). These conditions are
satisfied by the P6lya-gamma distribution, which may be thought of
as an infinite convolution of Gamma distributions; that is, w ~ PG(b,
¢), where

(13)

andg,~I(b,1). Alternatively, we can define the P6lya-gamma distribu-
tioninterms of its moment generating function (these two definitions
arerelated by the Laplace transform):

1
cosh’ (\/?) -

Thissecond definitionis useful, asit suggests that the logistic link func-
tion may be expressed in terms of P6lya-gamma variables

Epglexp(-wo)] = (14)

exp(z;)
¢@) T (Wrexp@)
_ oo
- Zcosh(%') (15)
2
=1 rexp (2 - Zai) pwpdo;.
Hence, substituting z;=yf(0,), we obtain
1 . 17
p(ylo.f) « exp(iy f=5f Of) . (16)

where Q=diag(w) is the diagonal matrix of the P6lya-gammavariables.
This augmented likelihood is conjugate to p(f) as required.

Developed in prior work’, once conditional conjugacy is restored,
itis possible to derive closed-form updates for variational inference
with natural gradients and alearning rate close to one, enabling highly
efficientinference of f.

Making the models scale with inducing points. Inference in GPs with
aGaussianlikelihood, while exact, take ©(N?)time, and hence additional
methods are required to performinference when the training dataare
large. One such method is to learn a ‘summary’ of the data withM < N
pseudoinputs, otherwise known asinducing points”,and hence reduce
the complexity to O(M?). Following the prior work’, we introduce M
additional variablesu =[u,, ..., u,], where the function values of the GP
farerelatedtouby

p(fiw) = N(f |KnnaKiyp 11, K)
p(a) = N(u|0, Kypr)

(17)

where &, is the kernel matrix resulting from evaluating the kernel at
the M inducing points, Ky, is the kernel between the training points
and the inducing pointsand K = Kyy — KyyK; 5 K-

Hence, the complete joint distribution of our model is given by

p(y w.fu) = p(yl@.f)p(@)p(flup). (18)

Implementation. This model is implemented in GPyTorch™ and is
publicly available through a dedicated GitHub repository.

Ensembles of models with only partially intersecting domains.
Ensembles of models can often achieve a performance similar to, and
sometimes even stronger than, the strongest constituent model”. Our
setup providesanovel opportunity to build a highly performant ensem-
ble model by incorporating the scores from multiple evo models. By
training a separate Gaussian process model for each evo model, we
naturally create directly comparable scores between models, thereby
enabling the typical, but potentially problematic, standardization step
tobe bypassed entirely. We define the popEVE score 6 to simply be the
mean of the means of the posteriors of each GP, for each evo model
whose domain contains the variant of interest.

19

where QZ isthe number of evo models capable of making a prediction
for the amino acid substitution a at positioniin proteinj.

Performance assessments

We evaluated key properties of our model with a number of clinically
relevant tasks and compared its performance with pre-existing models,
whose scores were downloaded from dbNSFP (v.4.7)” (we use the same
set of models that were analyzed in a previous publication®).

Comparing model performance within proteins. To assess model
performance at ranking the pathogenicity of variants within the same
gene, similar to prior work", we consider two tests: correlation of model
predictions with deep mutational scans and ability to predict benign
and pathogeniclabelsin ClinVar.

To assess concordance with deep mutational scans, we compute
the Spearman’s correlation between the model score and reported
experimental fitness (for example, expression) (Extended DataFig. 2).
To assess the ability to separate benign from pathogenic variants, we
made use of two curated sets of ClinVar labels as described in ‘ClinVar
benign and pathogenic variants’. We computed the area under the
receiver operating characteristic curve for all genes with at least five
benign and five pathogenic labels. With these sets, we were able to
assess the performance across 50 and 31 proteins andin2019 and 2020
datasets, respectively (Extended Data Fig. 1).

Comparing model performance across proteins. Ranking clinical
pathogenic variants by severity. To evaluate how well models rank
clinical pathogenic variants by severity, we assembled a set of Clin-
Var 1+ star variants linked to phenotypes with childhood or adult
onset or death, based on OrphaNet annotations®. For each model,
we identified the 5th percentile score threshold for benign ClinVar
variants and used this as areference. We then compared the log odds
of childhood-versus-adult-associated pathogenic variants falling
below this threshold. Pairwise z-scores and P values were computed
to assess whether model differences were statistically significant. Mod-
els focused solely on pathogenicity are expected to perform poorly,
whereas those capturing variant fitness and phenotypic severity should
distinguish between childhood and adult onset variants.

Distinguishing SDD cases from unaffected controls. We next evaluated
the model’s ability to rank variant severity across the proteome and
across individuals. To do so, we constructed a test set from de novo
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variants found in patients with SDDs and unaffected siblings of indi-
viduals with autism spectrum disorder. The goal was to determine
whether the model could distinguish cases carrying likely pathogenic
denovo variants from controls with variants not expected to contribute
to disease.

We defined ‘cases’ asindividuals with at least one de novo variant
inaknown DD gene (DDG2P, downloadedJanuary 2023), following the
approach of a previous publication®. However, only a subset of these
variants is expected to be truly pathogenic. Based on an observed
excess of 2,982 de novo missense variants among 5,625 cases, we
estimate that approximately 53% carry a causal variant. Accordingly,
we adjusted the maximum achievable recall to reflect this expected
upper bound.

This test set (Supplementary Table 5) allows us to benchmark
model performanceinarealistic clinical setting. popEVE outperforms
all current state-of-the-art models for pathogenicity prediction,
including the underlying evolutionary models it builds upon (Fig. 3b,
Extended Data Fig. 9a and Supplementary Table1).

Assessing overprediction of deleterious variants in the general popu-
lation. We evaluated each model’s ability to recover SDD cases from
de novo mutations or WES while minimizing false positives in the
general population. For each model and score threshold, we com-
puted the percentage of individuals in the UKBB and SDD metacohort
(or DDD sub-cohort) with at least one variant as or more pathogenic
(Fig.2h,kand Supplementary Fig.10d,f), comparing the cumulative
distributions between cases and controls. For the SDD metacohort,
we used individuals with de novo missense variants in genes previ-
ously implicated by DeNovoWEST?, representing high-confidence
diagnoses.

To assess prioritization of causal variants, we calculated the
fraction of DDD individuals whose de novo variant was ranked more
pathogenicthanallinherited variants at each threshold. At -5.056, 513
individuals had a qualifying variant, and in 98% of cases, it ranked as the
most deleterious. The rate of decay reflects each model’s genome-wide
ranking ability.

Analysis of patient data

We explored two approaches to analyzing de novo mutations from a
metacohort composed of subjects from the DDD study, GeneDx and
Radboud Medical Center in the hope that popEVE may provide novel
evidence for the genetic diagnosis of currently unsolved cases: burden
testing of variants per gene across the full cohort, and per-patient direct
case-variantassociation.

Direct case-variant association. Based on the set of de novo variants
from cases and controls, we constructed a Bayesian Gaussian mixture
model to determine ascore cutoff as:

M~ N, Xo)

1 ~ N(Ho,Xo)

Ay ~ Lognormal (1, 0;)

Ay ~ Lognormal (1, 0;)

(20)
m ~ Dirichlet (a)
Fori=1,..,N:

a; ~ Categorical (m)

X; ~ N("a,-’/lal)
where p,=-3.6 and X, = 0.7. We then identified an uncertainty cutoff
corresponding toagreater than 99.99% likelihood of beingin the lower
fitness distribution, 6 < —5.056. We found that constructing the model

with solely the de novo variants from the cases resulted in a similar
threshold.

Usingthe threshold 6 < —5.056, we searched the full DD cohort for
individuals with atleast one de novo missense variant below this score
and no predicted LoF variants. For these individuals, we consider the
identified missense variant a strong candidate for being causal. In
addition to the high accuracy of the Gaussian mixture model, these
variants show strong enrichment relative to the background mutation
rate (Fig. 3d), further supporting their likely pathogenicity.

Gene-collapsing model. To compare with previous methods, we
implemented gene-collapsing models for the SDD cohort following the
DeNovoWEST framework®. For each gene, we estimated the probability
of observing atotal score >x,, by testing mutation counts (O to N) until
the Poissonlikelihood, based on expected de novo mutationrates, fell
near zero. Context-dependent mutation rates from Samocha et al.
(2014)* were used to estimate expected counts and sample variants.
We ran 10,000 simulations per gene. To adjust for multiple testing,
we also assessed the likelihood of observing a score >x,,, anywhere in
the proteome.

N

p(gene) = Z P(n = ngenel/lgene)P(Xgene < xobsln)P(xproteome < Xopsl) (21
n=0

We selected our significance cutoff by dividing 0.05 by the total
number of tests (or total number of genes or proteins we have mod-
eled): p <0.05/18,395. We also performed gene collapsing on the
unaffected controls using the same method.

Structural and functional analysis of deleterious mutations
Functional similarity of novel and known DD genes. We compared
the functional properties of our novel genes with comparison to known
DD genes® across features known to differentiate DD genes from genes
not associated with DDs, similar to previous work®. We calculated the
enrichment of these variables in either our novel genes or known DD
genes compared to non-DD genes (Fig. 6d, Extended Data Fig. 8 and
Supplementary Tables 8 and 9).

For interactions, we selected protein-protein interactions
(BioGRID”’) enriched in known DD genes compared to non-DD genes.
To ensure that these interactions are generalizable, we selected
those that are significantly enriched in known DD genes (P < 0.05
after Benjamini-Hochberg correction) and present in at least 10%
of known DD genes (n >223). Median expression, measured in reads
per kilobase of transcript per million mapped reads, in the fetal brain
was determined across samples from the Allen Brain Atlas’™. For the
relevant Gene Ontology terms Molecular Function and Biological
Processes, we selected terms enriched in known DD genes compared
to non-DD genes using DAVID”. To ensure these terms are generaliz-
able, we selected those that are significantly enriched in known DD
genes (P < 0.05 after Benjamini—-Hochberg correction) and present
in at least 10% of known DD genes (n > 223). Haploinsufficientis a
binary variable of genes with evidence of haploinsufficiency (dosage
pathogenicity level three) from the ClinGen Dosage Sensitivity Map®;
human essential is a binary variable of whether a gene was deemed
essential in human cell lines based on CRISPR screens™; ACMG genes
isabinary variableindicating whetherageneisa clinically actionable
gene according to the American College of Medical Genetics and
Genomics (v.2.0)%; somatic driversis abinary variable of whether the
geneisknown to be asomatic driver gene®; mouse essential is abinary
variable of whether a gene is essential in mice; that is, homozygous
knockouts of that gene resulted in lethality’>®*; and LoF tolerant is
a binary variable of whether a gene is tolerant of homozygous LoF
mutations in humans’®,

Functional network. We created a functional gene network with
123 de novo novel genes from popEVE (with a 99.99 threshold) and
significant genes from DeNovoWEST® using STRING®, as shown in
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Extended Data Fig. 9a and Supplementary Table 10. We show edges
from medium-confidence (0.4) experiments. Genes were denoted
as previously discovered if they were already observed in DDG2P* or
DeNovoWEST.

Additionally, we used medium-confidence (0.4) experiment anno-
tations to calculate the average node degree of DDG2P genes and
DeNovoWEST genes with and without our significant popEVE genes
included, both from de novo analysis and no-trios analysis (Extended
DataFig. 9b). To determine the relative difference that the significant
genes make versus arandom set of genes, we performed ¢-tests 100,000
times with random samples of genes from the whole human genome
(with the known and popEVE genes excluded).

Manual structure analysis. From the 131 novel popEVE mutations,
weindividually investigated structures for the top 20 most predicted
deleterious. We only analyzed cryo-electron microscopy or crystal-
lographic structures where our mutation is included in the resolved
protein structure. To enhance our analysis, we prioritized structures
that exhibited interactions with other proteins and/or ligands. This
allowed us to capture and understand the potential consequences of
theseinteractions. All distances listed were calculated with the distance
functionin PyMol.

Comparative analysis of protein-ligand interactions using a null
model. We compared de novo variants from the SDD metacohortand
inherited variants from the DDD subset against a null model, which
calculated the distance from each position on the variant-containing
chaintothe nearest ligand. Resolved crystal structures were processed
using the Evcouplings PDB reader, with distances computed using the
Evcouplings compare package®. Z-scores were computed by subtract-
ing the mean chain-wide distance (excluding the variant site) from the
variant-to-ligand distance. Variants were excluded if the chain length
differed fromthe full protein length by more than two standard devia-
tions. Full results are in Supplementary Table 11.

Functional interactions in 3D structures for high-scoring patho-
genic variants. 3D structures of proteins with high-scoring path-
ogenic variants were retrieved by alignment to SIFTS database
sequences® using EVcouplings® with one HMMER iteration®” and
a 0.2 bits per residue threshold. A variant was considered to have
evidence of functional interaction if, in any matched structure, its
position contacted a non-self PDB entity within 8 A, excluding water
and common crystallographic additives (entity info from PDBe
REST API*),

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Interactive web viewer and downloads for popEVE scores are avail-
ableat pop.evemodel.org. De novo variants from SDD cases and unaf-
fected controls were sourced from previous publications®**, WES data
from the DDD subset of the SDD cohort are available under controlled
access fromthe European Genome-Phenome Archive (EGA; accession
EGAC00001000282). Access is managed by the DDD Data Access
Committee to ensure use is consistent with participant consent and
ethical approvals. Researchers wishing to obtain the datashould apply
through the EGA portal, providing details of their research project,
institutional affiliation and ethical approval. Population variants are
from GnomAD (v.2) and UKBB.

Code availability
Codeisavailable at Github (https://github.com/debbiemarkslab/pop-
EVE) and Zenodo (https://doi.org/10.5281/zenodo.17055823)%,

References

58. Suzek, B. E. et al. UniRef clusters: a comprehensive and
scalable alternative for improving sequence similarity searches.
Bioinformatics 31, 926-932 (2015).

59. Landrum, M. J. et al. ClinVar: improving access to variant
interpretations and supporting evidence. Nucleic Acids Res. 46,
1062-1067 (2018).

60. Hopf, T. A. et al. Mutation effects predicted from sequence
co-variation. Nat. Biotechnol. 35, 128-135 (2017).

61. Hopf, T. A. et al. The EvCouplings Python framework for
coevolutionary sequence analysis. Bioinformatics 35, 1582-1584
(2019).

62. Eddy, S.R. Accelerated profile HMM searches. PLoS Compuit. Biol.
7,1002195 (2011).

63. Wang, Q. et al. Rare variant contribution to human disease in
281,104 UK Biobank exomes. Nature 597, 527-532 (2021).

64. Livesey, B. J. & Marsh, J. A. Updated benchmarking of variant
effect predictors using deep mutational scanning. Mol. Syst. Biol.
19, e11474 (2023).

65. Kingma, D.P. & Welling, M. Auto-encoding variational Bayes.
Preprint at https://doi.org/10.48550/arXiv.1312.6114 (2014).

66. Rezende, D.J., Mohamed, S. & Wierstra, D. Stochastic
backpropagation and approximate inference in deep generative
models. Preprint at https://doi.org/10.48550/arXiv.1401.4082
(2014).

67. Vahdat, A. & Kautz, J. NVAE: a deep hierarchical variational
autoencoder. Preprint at https://doi.org/10.48550/arXiv.
2007.03898 (2020).

68. Ramesh, A. et al. Zero-shot text-to-image generation. Preprint at
https://doi.org/10.48550/arXiv.2102.12092 (2021).

69. Bowman, S.R. et al. Generating sentences from a continuous
space. Preprint at https://doi.org/10.48550/arXiv.1511.06349
(2016).

70. Ekeberg, M., Lovkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved
contact prediction in proteins: using pseudolikelihoods to infer
Potts models. Phys. Rev. E 87, 012707 (2013).

71. Polson, N. G., Scott, J. G. & Windle, J. Bayesian inference for
logistic models using Pélya-gamma latent variables. J. Am. Stat.
Assoc. 108, 1339-1349 (2013).

72. Wenzel, F., Galy-Fajou, T., Donner, C., Kloft, M. & Opper, M.
Efficient Gaussian process classification using Polya-gamma
data augmentation. In Proc. AAAI Conf. on Artificial Intelligence
5417-5424 (AAAI Press, 2019).

73. Snelson, E. & Ghahramani, Z. Sparse Gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing
Systems Vol. 18 (eds. Weiss, Y. et al.) 1257-1264 (MIT Press, 2005).

74. Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q. & Wilson, A.G.
Gpytorch: blackbox matrix-matrix Gaussian process inference
with GPU acceleration. In Advances in Neural Information
Processing Systems (eds. Bengio, S. & Wallach, H. M.) 7587-7597
(Curan Associates, 2018).

75. Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms
(CRC Press, 2012).

76. Liu, X., Li, C.,Mou, C., Dong, Y. &Tu, Y. dbNSFP v4: a
comprehensive database of transcript-specific functional
predictions and annotations for human nonsynonymous and
splice-site SNVs. Genome Med. 12, 103 (2020).

77. Oughtred, R. et al. The biogrid database: a comprehensive
biomedical resource of curated protein, genetic, and chemical
interactions. Protein Sci. 30, 187-200 (2021).

78. Miller, J. A. et al. Transcriptional landscape of the prenatal human
brain. Nature 508, 199-206 (2014).

79. Sherman, B. T. et al. David: a web server for functional enrichment
analysis and functional annotation of gene lists (2021 update).
Nucleic Acids Res. 50, 216-221(2022).

Nature Genetics


http://www.nature.com/naturegenetics
https://pop.evemodel.org
https://ega-archive.org/dacs/EGAC00001000282
https://github.com/debbiemarkslab/popEVE
https://github.com/debbiemarkslab/popEVE
https://doi.org/10.5281/zenodo.17055823
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1401.4082
https://doi.org/10.48550/arXiv.2007.03898
https://doi.org/10.48550/arXiv.2007.03898
https://doi.org/10.48550/arXiv.2102.12092
https://doi.org/10.48550/arXiv.1511.06349

Article

https://doi.org/10.1038/s41588-025-02400-1

80. Kalia, S. S. et al. Recommendations for reporting of secondary
findings in clinical exome and genome sequencing, 2016 update
(acmg sf v2. 0): a policy statement of the American College of
Medical Genetics and Genomics. Genet. Med. 19, 249-255 (2017).

81. Martincorena, |. et al. Universal patterns of selection in cancer
and somatic tissues. Cell 171, 1029-1041 (2017).

82. Georgi, B., Voight, B. F. & Bu¢an, M. From mouse to human:
evolutionary genomics analysis of human orthologs of essential
genes. PLoS Genet. 9, 1003484 (2013).

83. Szklarczyk, D. et al. The STRING database in 2023: protein-
protein association networks and functional enrichment
analyses for any sequenced genome of interest. Nucleic Acids
Res. 51, 638-646 (2022).

84. Velankar, S. et al. SIFTS: structure integration with function,
taxonomy and sequences resource. Nucleic Acids Res. 41,
D483-D489 (2013).

85. Marks Lab. popEVE: population-based variant effect prediction
models. Zenodo https://doi.org/10.5281/zenodo.17055823 (2025).

Acknowledgements

We thank all members of the Marks Lab, Dias and Frazer Lab and
Sander Lab for valuable discussions. We also thank J. Nicoludis
and Invitae for their assistance with training some of the EVE
models. R.O., AW.K.,, C.A.S., M.D., J.F. and D.S.M. are supported by
a Chan Zuckerberg Initiative Award (Neurodegeneration Challenge
Network, CZ12018-191853). H.S. and D.S.M. are supported by a
National Institutes of Health Transformational Research Award
(TRO11RO1CA260415). C.A.S. is supported by the National Science
Foundation Graduate Research Fellowship under grant no. DGE-
2146755. M.D. and J.F. are supported by the Spanish Ministry of
Science and Innovation (PID2022-140793NA-100) funded by MCIN/
AEI/10.13039/501100011033/FEDER, UE) and acknowledge the
support of the Spanish Ministry of Science and Innovation through the

Centro de Excelencia Severo Ochoa (CEX2020-001049-S, MCIN/AEI
/10.13039/501100011033) and the Generalitat de Catalunya through
the CERCA programme.

Author contributions

R.O., J.F., M.D. and D.S.M. conceived the end-to-end approach. R.O.,
J.F. and M.D. built the models. R.O. and C.A.S. compiled and annotated
the clinical and genomic data for analysis. AW.K. and L.v.N. supported
model training. R.O., T.H., D.S.M., A.D.S., D.F. and C.A.S. performed the
structural and functional analysis. T.H. developed the interactive web
application. R.O., D.S.M., M.D. and J.F. wrote the manuscript. D.S.M., J.F.
and M.D. led and supervised the project.

Competinginterests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41588-025-02400-1.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41588-025-02400-1.

Correspondence and requests for materials should be addressed to
Mafalda Dias, Jonathan Frazer or Debora S. Marks.

Peer review information Nature Genetics thanks Ryan Dhindsa and the
other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Genetics


http://www.nature.com/naturegenetics
https://doi.org/10.5281/zenodo.17055823
https://doi.org/10.1038/s41588-025-02400-1
https://doi.org/10.1038/s41588-025-02400-1
https://doi.org/10.1038/s41588-025-02400-1
https://doi.org/10.1038/s41588-025-02400-1
http://www.nature.com/reprints

https://doi.org/10.1038/s41588-025-02400-1

Article
a ClinGen - ClinVar 2019 b. ClinGen - ClinVar
AlphaMissense :' - AlphaMissense -3
popEVE gMVP =
VEST4 A - popEVE
REVEL 4 = VARITY_R_LOO A -
gMVP A -— ESM1b 4 —
VARITY_R_LOO A - REVEL 1 —
BayesDel_noAF - - ESM1V
EVE - DEOGEN2 —
ESM1b - - EVE
PROVEAN 4 — BayesDel_noAF A -
DEOGEN?2 — VEST4 A -_—
ESM1V - MPC ~ =
Polyphen2_HVAR 4 —_— PR_OVEAN E —
MPC A _— PrimateAl - =
SIFT e M-CAP A —
PrimateAl —_— Polyphen2_HVAR —
Polyphen2_HDIV - _ SIFT 1 —
M-CAP A — LIST-S2 4 o
LIST-S2 4 — Polyphen2_HDIV 4 —
fathmm-MKL_coding - —_— fathmm-MKL_coding . y i
0.00 0.|25 O.ISO 0.|75 1.00 0.00 0.25 0.50 0.75 1.00
AUC AUC
C.
LA B SLC22A5 @ COL3Al1
° = =@ LRPPRC . = @ COL4A4
° mE- TWNK L4 B COL6A2
L4 u B CACNAlA hd EF CACNA1A
. sk SpG7 me e ' e@|l BRCAL
° » =@ FOXG1 e = . = MYO7A
e e B[ DYRKIA e o one e mE[ STXBP1l
eoon EMON mE- MYO7A ° °° e ° " .l.: E&DGZI
° e o o @ ZEB2 ° u ewe mmf- SCN1A
me o [ ] = B COL4A2 ° mE»~ COL1AL
] om L B~ AARS2 ® o e » @ @ Ef DNM1
° ® o m - COL3A1 ° ° = m - SETD5
) P . : i\fF’\éSlA ° ® nes me e @ = EENS?PI
(X} ° emm '@ - BRAF e GRIN2B
° L) =@~ GRIN2B AC013394.1
° e eommum |- COL5A1 o u HECW2
o ° ~ KCNH2 ° ° » - SCN8A
1 oD N - GRIN2A ] ° [ ] - SMARCA2
L RAF1 I GRIN2A
° ® e - SYNGAPL er o om =me [ GRIN1
L KCNQ3 |} [ ] (=5} om " Ep SC2
L] - CDH1 u I d L] u e m~ SLC6Al
° - KCNT1 o = e mEmE-E L TcFa
L - CHD2 ° @ e ® - KCNT1
° (q I - KCNQ1 T T T T T T
. ° R C a’g‘mé 0.5 0.6 0.7 0.8 0.9 1.0
« [ ] B HeC ~ MLH1
1) ° ~ BRCAL
e o - SCN4A
- o um [ STsp1 * POpEVE © MCAP
o m - LOR = AlphaMissense s MPC
n =
o m  en e L TSC2 BayesDel_noAF PROVEAN
. o¢, e [ MsH2 . DEOGEN2 «  Polyphen2_HDIV
" " o - r E%’F‘A% = ESM1V *  Polyphen2_HVAR
° ° -] - GARS = ESM1lb »  PrimateAl
[T ] > 1l » - MYBPC3
om Y T - SCNSA EVE REVEL
o " aea" ok ,53}(” fathmm-MKL_coding SIFT
o " . .l oo mm :?8:541 gMVP VARITY_R_LOO
o o = E® o = - ARIDIA LIST-S2 VEST4
[ ] »E = e eom - ABCC8
1 1 T 1 1 T
0.5 0.6 0.7 0.8 0.9 1.0

attempts to address data leakage in the estimation of performance of supervised
methods by removing ClinVar variants used in training. This test lacks the
resolution to distinguish state-of-the-art models. Thisis highlighted by the fact
the ranking of AUCs in the ClinGen 2020 and ClinGen 2019 significantly changes.
c.Breakdown of performance by gene.

Extended Data Fig. 1| Performance summary for separating Benign/Likely
Benign from Pathogenic/Likely Pathogenic ClinVar labels. Assessing the
performance of popEVE and popular supervised and unsupervised variant
effect prediction models on individual genes that have at least 5 benign and
5pathogenic variants from the ClinGen curation of a. Clinvar 2019 and b. ClinVar
2020, using the area under the receiver-operating curve. The ClinGen dataset
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On average popEVE outperforms other models.
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Extended DataFig. 7| popEVE is better at separating developmental disorder
cases from healthy controls than other state-of-the-art models. a. Extension
of Fig. 2c with allmodels - popEVE is better at separating “diagnosed” SDD cases
whose disorder is likely to be caused by a de novo missense variant (cases with
atleast one missense variant in aknown developmental disorder gene) from
controls than other state of art variant effect predictors with an average precision
0of 97%. b. Precision recall for “high-confidence diagnosed” SDD cases (at least
one de novo missense in a gene discovered by DeNovoWEST in the same cohort).
c. Precision recall for all cases vs controls. d. Extension of Fig. 2d with all models

- popEVE recalls more SDD cases (with at least one missense variant in DNW-
discovered genes) without overpredicting pathogenicity in healthy controls
from UKBB. While popEVE recalls 50% of these individuals for only 16% of the
UKBB, the next best model, Alpha Missense, predicts 92% of UKBB has a variant as
pathogenic as 50% of this SDD subset. e. Extension of Fig. 3b with all models - For
eachscore threshold, we plot the percent of individuals with a de novo missense
variantranked as more deleterious than rare inherited variants. In individual
cases, popEVE is better at ranking de novo mutations as more deleterious than
rare inherited variants (MAF<0.01) than other models.
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discovered in the SDD cohort) show similar enrichmentin properties known to
differentiate known DD-genes from non-developmental disorder genes (95% Cl
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network of know developmental disorder genes, novel genes from the full SDD
meta-cohort had a42% increase in node degree as compared to random sets of
the same number of genes which saw an average of 9% (with p <0.000, t-test).
¢, When added to a network of know developmental disorder genes, novel
genes from the DDD sub-cohort had a 53% increase in node degree as compared
to random sets of the same number of genes which saw an average of19%
(withp<0.000, t-test).
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The main data analysed and generated in this study is available in Supplementary Information and at pop.evemodel.org. All other data is available from original
references, public repositories or protected repositories described in the text.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a
other socially relevant

groupings

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

& Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All experimental data and associated sample sizes were used as published in their respective works.
Data exclusions  No data was excluded from this analysis.

Replication The majority of data was obtained from public repositories or published sources. Access to the variants from the UK Biobank and the DDD
study must be applied for.

Randomization  Randomization is not relevant to the computational analysis of this study, since it is fully unsupervised.

Blinding The same model building process was applied to all genes in this study and required no human interpretation and so no blinding was
necessary.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines IX D Flow cytometry
Palaeontology and archaeology @ D MRI-based neuroimaging
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Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
VDvgsbchl/fZ);éugrl;)‘/ authentication-procedures for-each-seed stock-used-ornovel-genotype-generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

>
Q
g
[
=
D
©
(@]
=
o
S
=
(D
o
(@]
=)
>
«Q
wv
(e
3
3
QU
S




	Proteome-wide model for human disease genetics

	Results

	Method development

	A unified model of population and evolutionary sequences
	Converting gene-level scores to proteome-wide scores
	popEVE shows limited to no population bias

	popEVE captures variant severity and pathogenicity

	Distinguishing pathogenic variants based on phenotype severity
	Deleterious scores are enriched in SDD
	Distinguishing SDD cases from controls
	Recovering cases without overpredicting severity

	Evidence of 123 novel candidate DD genes

	Candidate discovery
	Case variants lie in 3D interaction sites
	Functional analysis supports candidate genes

	Pinpointing likely causal de novo variants without parental genomes


	Discussion

	Online content

	Fig. 1 popEVE combines deep evolution and human variation.
	Fig. 2 popEVE captures variant severity and pathogenicity.
	Fig. 3 popEVE recalls severe genetic disorder cases without overpredicting pathogenicity in the general population.
	Fig. 4 popEVE finds evidence for 123 novel candidate genes in SDDs.
	Fig. 5 Deleterious scoring variants lie in 3D interaction sites of candidate genes.
	Fig. 6 popEVE novel candidates are functionally similar to known DD genes.
	Fig. 7 popEVE recalls candidates without parental genomes.
	Extended Data Fig. 1 Performance summary for separating Benign/Likely Benign from Pathogenic/Likely Pathogenic ClinVar labels.
	Extended Data Fig. 2 Correlation of computational variant effect predicting models with high-throughput experimental assays.
	Extended Data Fig. 3 Correlation between EVE and Esm1v scores.
	Extended Data Fig. 4 popEVE shows minimal population bias across diverse ancestries.
	Extended Data Fig. 5 Correlation between popEVE gene-level statistics and gene-level constraint measures.
	Extended Data Fig. 6 Odds ratios of ClinVar pathogenic variants in genes associated with premature death and onset.
	Extended Data Fig. 7 popEVE is better at separating developmental disorder cases from healthy controls than other state-of-the-art models.
	Extended Data Fig. 8 Functional enrichment of known and novel genes.
	Extended Data Fig. 9 Novel genes increase node connectivity of known developmental disorder genes.
	Table 1 Top 25 most deleterious novel candidates.




