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Proteome-wide model for human  
disease genetics
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Missense variants remain a challenge in genetic interpretation owing to 
their subtle and context-dependent effects. Although current prediction 
models perform well in known disease genes, their scores are not 
calibrated across the proteome, limiting generalizability. To address 
this knowledge gap, we developed popEVE, a deep generative model 
combining evolutionary and human population data to estimate variant 
deleteriousness on a proteome-wide scale. popEVE achieves state-of-the-art 
performance without overestimating the burden of deleterious variants 
and identifies variants in 442 genes in a severe developmental disorder 
cohort, including 123 novel candidates. These genes are functionally similar 
to known disease genes, and their variants often localize to critical regions. 
Remarkably, popEVE can prioritize likely causal variants using only child 
exomes, enabling diagnosis even without parental sequencing. This work 
provides a generalizable framework for rare disease variant interpretation, 
especially in singleton cases, and demonstrates the utility of calibrated, 
evolution-informed scoring models for clinical genomics.

Even if every human were sequenced and their phenotypes recorded, 
the space of disease-causing genetic variation may be too large to be 
studied by population variation or disease-relevant experimental assays 
alone. Patients with unique combinations of symptoms and genotypes 
would still go without a genetic diagnosis1,2. The biodiversity of life on 
Earth provides a deeper view of genetic variation across billions of years 
of evolution, presenting a unique opportunity to uncover complex 
genetic patterns preserved to maintain fitness. Thus, models that can 
distill such information accelerate our ability to leverage genetics for 
diagnosis, prevention and treatment.

For severe genetic disorders, the task is to identify the causal 
variant among millions of mutations in a patient. One powerful 
approach is the sequencing of trios—patient and their parents—which 
can narrow down the pool of candidate variants to those arising 
de novo when the parents are unaffected or to inherited variants 
from an affected parent3,4. Despite the impressive analysis of large 

rare disease cohorts4–9, genetic diagnostic yield is relatively low; in 
some cases, only 25% of probands receive a genetic diagnosis5. There 
is a need for alternative strategies to identify candidate causal vari-
ants directly from a patient’s sequencing data, without relying on the 
frequency of observations in large cohorts. In this work, we present 
how probabilistic modeling of diverse sequencing, in both humans 
and across diverse species, can potentially aid clinical interpretation 
of never-before-seen variation.

Recent work using deep unsupervised models trained only on 
evolutionary sequences has shown strong promise for clinical variant 
effect prediction10–15 and have demonstrated comparable accuracy 
to experimental approaches11. Given these models do not depend on 
functional or clinical labeling, they can generalize to variants in genes 
without previous annotation. However, although these models often 
perform well in terms of separating Benign from Pathogenic clinical 
labels in known disease genes, they are not calibrated well across the 
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model scores should be continuous, have residue resolution and have 
the same quantitative meaning across different proteins. Previous 
state-of-the-art computational methods have excelled in various tests 
of accuracy; for instance, correct classification of pathogenic and 
benign labels from curated clinical databases and reasonable corre-
lations with high-throughput experiments on specific proteins11,19–23. 
However, these benchmarks can result in overestimated accuracy 
in and generalizability to real-world scenarios in which thousands 
of missense variants, including hundreds of rare variants, must be 
ranked across a single person’s genome. This drawback has resulted 
in the understandable caution of the clinical use of computational 
methods, not least from the observation of an overprediction of del-
eterious variants21,23–26).

Converting gene-level scores to proteome-wide scores. popEVE is 
designed to provide a human-specific, continuous measure of variant 
deleteriousness that enables comparison across different proteins 
(Fig. 1 and Supplementary Fig. 1). To achieve a score that reflects con-
straint within humans and distinguishes the relative impact of individ-
ual variants, we reason that a model would need to not only learn from 
deep evolutionary variation but also from shallow variation observed in 
the human population. While deep evolutionary variation from across 
life can inform us about what is allowed for a protein to function, mod-
els trained solely on this information cannot necessarily learn the rela-
tive importance of one protein versus another. We build a unified model 
that predicts the effect of a variant in the population, conditioned on 
the underlying evolutionary scores using a latent Gaussian process 
prior, similar in spirit to gene-level and region-level estimates of mis-
sense constraint27–30. The model trains on the universe of sequences 
across evolution together with summary statistics of human variation 
from human population data. For the deep evolutionary sequence 
analysis, we combine a state-of-the-art alignment-based model, EVE11,  
and a large language model, ESM-1v31. Although the two models  
have comparable performance on clinical and deep mutational scan 
benchmarks, variant scores are not particularly well correlated22 

entire human proteome; that is, they are not designed for comparing 
how deleterious a variant is in one gene versus a variant in another. 
Consequently, previous methods excel at identifying variants that 
disrupt the function of the resulting protein but do not necessarily 
predict whether it is detrimental at the organismal level16.

Variant severity lies on a spectrum: for instance, disruption of 
function in one protein could have modest effects late in life, while the 
disruption of another protein can be lethal in childhood. Both can be 
considered ‘pathogenic’ and correctly identified as such by a model, 
but when attempting to find the genetic cause of a severe disorder, it 
is imperative to be able to distinguish between these two scenarios. 
Current state-of-the-art variant effect prediction models have not 
been developed with this spectrum of severity in mind. To overcome 
this problem, we developed popEVE, a model that places variants on 
a proteome-wide scale of deleteriousness, enabling us to predict if a 
variant seen in one gene is more detrimental to human health than 
a variant seen in another. popEVE leverages deep evolutionary data 
to achieve missense-resolution variant effect prediction and shal-
low variation across the UK Biobank17 (UKBB) or Genome Aggrega-
tion Database (GnomAD) (v.2)18 population to transform the score to 
reflect human-specific constraint. Analyzing a metacohort8 of patients 
with severe developmental disorders (SDDs), we find evidence for 
123 candidate novel genetic disorders from their de novo missense 
mutations (DNMs), which is 4.4× more than previously identified in 
the same cohort, and yet significantly similar in function to known 
developmental disease genes. For cases with whole-exome sequencing 
(WES), we are able to identify the likely causal DNM knowledge of its 
inheritance pattern. Thus, popEVE provides valuable information for 
genetic diagnosis, even in the absence of trio sequencing, increasing 
the scope of genetic analysis.

Results
Method development
A unified model of population and evolutionary sequences. For 
a computational model to be broadly useful in human genetics, the 
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Fig. 1 | popEVE combines deep evolution and human variation. popEVE combines variation from across evolutionary sequences, modeled with EVE and ESM-1v, with 
variation within the human population (UKBB17 or GnomAD18), using a Gaussian process to learn the relationship between evolutionary scores and missense constraint.
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(Extended Data Figs. 1–3), indicating useful orthogonal evidence 
of variant fitness. popEVE scores are enriched in haploinsufficient 
genes compared to loss-of-function (LoF) tolerant ones, and, to a lesser 
extent, in genes with dominant versus recessive inheritance patterns—
consistent with its adjustment for constraint (Supplementary Fig. 2). 
These scores correlate more strongly with missense-based constraint 
metrics than those based on LoFs (Spearman’s ρ, 0.52 Missense-Z29, 
0.44 pLi18, P < 0.001; Extended Data Fig. 5 and Supplementary Tables 2 
and 3). To be broadly useful, a variant scoring method should generate 
missense-resolution scores across the genome that reflect not only 
pathogenicity, but also the magnitude of the effect on protein fitness 
and the resulting phenotype. Our framework leverages population 
variation to calibrate scores across genes, while performing com-
petitively with leading methods on within-gene benchmarks, namely, 
ClinVar classification and DMS correlation tasks (Extended Data Figs. 2 
and 3 and Supplementary Table 1). Importantly, because population 
data is only used to re-rank variants across genes, internal rankings 
within genes remain largely unchanged. This allows the population 
adjustment to be safely incorporated into annotation pipelines that 
treat allele frequency as an independent evidence source. Standard 
benchmarks typically emphasize binary classification: determining 
whether a variant is benign or pathogenic within a single gene. While 
this is useful for some clinical decisions, it fails to capture variation in 
disease severity.

popEVE shows limited to no population bias. A disadvantage of using 
population data is that it can introduce population structure bias32. To 
mitigate this limitation, we use a coarse measure of missense variation 
(‘seen’ or ‘not seen’) rather than using allele frequencies. As such, the 
presence of a rare variant in a single person in the training population 

is treated the same as the presence of a common variant in the vast 
majority of people. We find that popEVE score distributions of rare 
variants (minor allele frequency (MAF) < 0.01) are similar across various 
ancestries in GnomAD (v.2)18 (Extended Data Fig. 4). Our results are sup-
ported by an independent analysis of ancestry bias in variant scoring 
methods, which found that popEVE shows minimal bias towards Euro-
pean ancestries, in line with population-free methods32. By contrast, 
state-of-the-art competitors, including AlphaMissense19, BayesDel33 
and REVEL34, show significant bias towards these populations32.

popEVE captures variant severity and pathogenicity
Distinguishing pathogenic variants based on phenotype severity. 
First, we tested whether popEVE can distinguish variants causing severe 
clinical outcomes—such as childhood-onset or fatal disorders35—from 
those with more moderate effects. popEVE scores significantly separate 
childhood death-associated variants from adult death variants bet-
ter than all other methods (P < 0.001; Fig. 2a, Extended Data Fig. 6a, 
Supplementary Fig. 3 and Supplementary Table 4). A similar, albeit 
weaker, pattern holds for age of onset (Fig. 2b, Extended Data Fig. 6b 
and Supplementary Fig. 4). This suggests popEVE captures variant 
severity in disease. Notably, it outperforms models tuned to allele 
frequency (for example, AlphaMissense, BayesDel) and those trained 
on clinical labels (for example, REVEL, Vest4). While those methods 
correctly classify most variants as potentially pathogenic, they lack 
the resolution that popEVE provides for distinguishing severity (Sup-
plementary Figs. 3 and 4).

Deleterious scores are enriched in SDD. To evaluate how well pop-
EVE captures variant severity, we compare de novo missense variants 
in SDD cases (n = 31,058) to those in unaffected controls from Autism 
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Fig. 2 | popEVE captures variant severity and pathogenicity. a, ClinVar 
pathogenic variants in phenotypes associated with premature death in childhood 
have more deleterious popEVE scores than those associated with death after 
maturation (left). Death labels were acquired from OrphaNet. At the fifth 
percentile of ClinVar benign variants, popEVE has a significantly larger odds ratio 
than any other method (right). b, Variants associated with onset in childhood  
have more deleterious popEVE scores than those associated with onset later  
in life (left), and popEVE has a greater odds ratio than other methods (right).  
c, popEVE scores for DNMs in SDD cases (top) and diagnosed cases (bottom) are 
shifted towards the deleterious end compared to controls (unaffected siblings 

from autism spectrum disorder family cohorts). d, Using DNMs from both 
SDD cases and controls, we define a severely and moderately deleterious score 
threshold by fitting a two-component Gaussian mixture model and finding the 
99.99% and 99% likelihood of being in the more deleterious distribution. e, With 
increasingly pathogenic thresholds, de novo mutations in the SDD metacohort 
are significantly enriched (top). At our severely pathogenic threshold, popEVE 
pathogenic variants exhibit over 15-fold enrichment, while popEVE benign 
variants are in line with expectation (bottom). Moderately pathogenic variants 
are enriched fivefold. The expected number of variants is quantified using a 
background mutation rate based on the number of individuals in the metacohort.
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Spectrum Disorder cohort trios (n = 5,764)36 and the UKBB17 (n ≈ 500k) 
(Supplementary Table 5). popEVE scores in cases were consistently 
shifted toward higher predicted deleteriousness (Fig. 2c, top). These 
DNMs showed increasing enrichment at more severe scores, exceed-
ing expectations based on background mutation rates (Fig. 2d, top). 
Among diagnosable SDD cases (n = 2,982, per a previous publica-
tion8), this shift is even more pronounced (Fig. 2c, bottom). Using a 
label-free two-component Gaussian mixture model on all variants, 
we set a high-confidence severity threshold at −5.056, where variants 
below this threshold have a 99.99% of being highly deleterious (Fig. 2e). 
Variants below this threshold are 15-fold enriched in the SDD cohort— 
five times higher than other methods like PrimateAI-3D as reported in 
Gao et al. (2023)20 (Fig. 2d, bottom). Moderate-scoring variants also 
show fivefold enrichment. Both severe and moderate case variants are 
absent from UKBB and gnomAD, while severe-scoring UKBB variants 
are extremely rare (Fig. 3a).

Distinguishing SDD cases from controls. To assess performance 
at ranking variants across the proteome, we tested our model’s abil-
ity to separate DNMs from missense-diagnosed SDD cases from 
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Fig. 3 | popEVE recalls severe genetic disorder cases without overpredicting 
pathogenicity in the general population. a, In the UKBB, individuals  
have at most one homozygous and up to three heterozygous severely 
deleterious variants; 96% of the 500k individuals have no severely pathogenic 
missense variants (left). Approximately 72% of UKBB individuals have no 
severely or moderately deleterious variants and at most five moderately 
deleterious variants (right). b, popEVE is better at separating diagnosed  
DD cases from controls based on DNMs than other state-of-the-art variant 
effect predictors with an average precision of 97%. Recall is adjusted based  
on the expected number of these cases to have a causal missense DNM 
(Methods). c, popEVE recalls more SDD diagnosed cases based on their  
DNMs without overpredicting pathogenicity in WES from relatively  
healthy controls from UKBB (gnomAD-trained popEVE). d, DNMs in  

SDD cases from the DDD Study are enriched for pathogenic variants 
in comparison to their rare inherited variants (MAF < 0.01) (two-sided 
Kolmogorov–Smirnov = 0.24, P < 0.0001). e, To recall 100% of de novo 
missense-diagnosed cases using their WES, popEVE predicts that far less of 
the general population will have a similarly deleterious variant than any other 
model. f, When applied to WES from a subset of the SDD cases, popEVE recalls 
more cases than other models without overpredicting pathogenicity in the 
general population of UKBB (using gnomAD-trained popEVE). Additionally, 
popEVE recalls 100% of cases expected to have a causal missense DNM for  
only 15% of the remaining cases and 16% of the general population (circles). 
Other models find that >78% of the UKBB has a variant as deleterious as these 
cases (inset).
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those in unaffected controls. popEVE performs better than all other 
state-of-the-art models at distinguishing diagnosed cases from 
healthy controls, improving average precision by 3.2% over the next 
best model (Fig. 3b). Notably, popEVE differentiates diagnosed cases 
from controls better than variant scoring methods that train directly 
on clinical labels that likely include diagnostic variants from these cases 
(Fig. 3b, Extended Data Fig. 7a,b and Supplementary Table 1). Indeed, an 
independent analysis supports popEVE as the leading variant scoring 
method in identifying likely causal variants in SDD cases16.

Recovering cases without overpredicting severity. A severity-aware 
model should rank variants in severe disorder cases as more deleterious 
than those in individuals with milder, complex conditions. As such, we 
compared the models’ abilities to distinguish developmental disorder 
(DD) cases likely to be caused by a single missense DNM from generally 
healthy individuals from the UKBB17 (Fig. 3c and Extended Data Fig. 7c). 
At increasingly stringent thresholds, popEVE recovers far more diag-
nosed cases without overpredicting severity in the general population. 
For example, popEVE can recall 50% of diagnosed cases while predicting 
only 11% of UKBB individuals to have equally severe variants. By con-
trast, AlphaMissense can identify 50% of cases but predicts 44% of the 
general population carries such variants, averaging five ‘pathogenic’ 
hits per person, compared to far less than one for popEVE.

As a final assessment, we tested how well models differentiate 
SDD cases from controls using their WES, including both inherited 

and de novo variants. Inherited variant scores resemble those in UKBB 
participants, while DNMs are shifted toward higher predicted severity 
(Fig. 3d). For cases with WES, popEVE shows a near 1:1 case–control 
separation, except at the most deleterious thresholds (Fig. 3e,f and 
Extended Data Fig. 7d). Other models overpredict severity in the gen-
eral population, classifying nearly all UKBB individuals as harboring 
variants as severe as half of the SDD cases. Once again, popEVE outper-
forms others by recovering more true cases with fewer false positives.

Evidence of 123 novel candidate DD genes
Given its performance across the various benchmarks and lack of biases, 
popEVE appears uniquely suited for use in clinical genetics settings to 
identify candidate variants. We first investigated popEVE’s utility in 
discovering novel variants and genes in the SDD cohort, comprising 
31,000 trios in total (Supplementary Table 5).

Candidate discovery. We used two approaches to identify associa-
tions: thresholding variants with a >99.99% likelihood of falling within 
the low-fitness distribution; and gene collapsing, comparing observed 
variant scores to expectations based on background mutation rates 
given the spectrum of scores within and across proteins (P < 2.71 × 10−6; 
Methods). This yielded 410 genes, including 152 previously reported 
by DeNovoWEST8 (Fig. 4 and Supplementary Table 6). popEVE recov-
ers 94% of missense-identified genes previously found in this cohort, 
and over half (135) are supported by the Developmental Disorder Gene 
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to Phenotype (DDG2P) database37. We highlight 123 of the genes as 
novel candidates, 119 of which were identifiable at the single-variant 
level (Supplementary Table 7). None of these variants were observed 
in UKBB or GnomAD individuals. Notably, during the review process 
of this publication, 25 of these candidates have since been added to 
the DDG2P (accessed 4 September 2025). A total of 31 genes were 
recovered using missense variants alone that previously required LoF 
data. Of the 50 known genes recovered only via collapsing, many had 
moderate scores, underscoring the value of this combined approach. 
To assess false positives, we applied gene collapsing to unaffected 
controls—no significant genes were found. Among controls, 18 variants 
were predicted as severe, including one linked to Long QT and Brugada 
syndrome38,39, which can cause sudden death in midlife (rs199473072). 
Variant thresholding flagged 7% of missense DNMs in cases to be severe 
(4.5% of patients), compared to just 0.5% in controls (0.2% of individu-
als). These results suggest that variant scores alone are informative and 
support using both methods when possible.

Case variants lie in 3D interaction sites. Since our method pinpoints 
individual variants that may be causal, it allows us to explore their 3D 
context where protein structures are available (85 out of 100 unique 
proteins40). Although we do not use any 3D structures as part of the 
modeling, we find that these candidate variants are close to interact-
ing biomolecules, thus plausibly affecting the protein’s function. 
We found that 91% are within 8 Å (72% within 5 Å) of an interaction 
partner, such as another protein, a metal, ligand, cofactor or nucleic 
acid, and are >90% closer to an interacting partner than any other 
random position in their respective protein (Methods). For example, 
the two candidate variants scored most deleterious by popEVE are in 
ETF1, a protein that mediates translation termination in the ribosome. 

R192C and R68L are both close (<3.2 Å) to the phosphate backbone of 
RNA in the 80S-eRF1-eRF3-GTP ternary complex (Fig. 5a and Table 1), 
PDB 6D90 (ref. 41). Both these residues are proximal to known func-
tional motifs: R192 to the GGQ motif that triggers the hydrolysis of the 
peptidyl-tRNA ester bond, terminating protein synthesis42, and R68 is 
part of NIKS motif, crucial for stop codon recognition43. Many other 
deleterious variants are associated with translation, such as Q60 in 
EIF4A2, which lies <2 Å from the ANP (Fig. 5b). Other top-scoring vari-
ants are in members of the NuRD complex44 include H373 in RBBP4, 
which is 3.78 Å from MTA1; and M31 in HDAC2, which lies directly in the 
‘foot pocket’ of the acetylase active site45, <2.5 Å (Fig. 5c). Finally, we 
also see highly deleterious variants in two interacting proteins; I637 in 
the T(V/I)GYG motif essential for ion transporter KCNN2 and D24 that 
binds calcium in CALM1 (ref. 46) (Fig. 5d). The enrichment of variants 
close to the ligands and the numerous examples in the top candidates 
of common complexes suggests their plausibility, examined in more 
statistical depth below.

Functional analysis supports candidate genes. Three lines of evi-
dence provide support for new candidates. Firstly 70% of the 410 genes 
identified using popEVE in the SDD cohort are already known to be 
associated with DDs (P < 0.001 compared to random; Methods, Fig. 4) 
and the score distribution of variants seen in cases in the candidate 
genes is nearly identical to those in known genes (Fig. 6a). Secondly, 
the remaining 123 newly identified proteins are hugely enriched for 
direct physical interactions with the 285 previously identified from 
the same cohort8 (two-sided t-test, P = 0; Fig. 6b, Extended Data Fig. 9 
and Supplementary Table 10). This includes 25 variants in 15 proteins 
from chromatin complexes (for example, NuRD and Sin3a), including 
HDAC2/5, RBBP4/7 and IKZF1 (Fig. 6c).

Table 1 | Top 25 most deleterious novel candidates

Gene Mutant Score PDB ID Interacting Partner Distance (Å)

ETF1 R192C, R68L −7.2, −6.8 7NWH, 5A8L 18S ribosomal RNA 1.6, 2.7

RBBP4 H373R −6.8 4PC0 Metastasis-associated protein MTA1 3.8

WDR5 S62N −6.8 2GNQ

UBE2D3 S105Y −6.7 7AHZ Ubiquitin 2.2

EIF4A2 Q60K −6.6 6B4K ANP 1.8

ANP32A L80R −6.4 6XZQ

UBE2H D120V −6.2 6ZHS Ubiquitin-activating enzyme UBA1 2.0

XPO1 T448K −6.2 4HB3 Ran (GTP-binding nuclear protein Ran) 2.9

AMIGO1 L112P −6.1 2XOT

COPS2 F69C −6.1 6A73 Inositol hexakisphosphate (InsP6) 6.5

RBBP4 T155I −6.0 2XU7 Zinc finger protein ZFPM1 2.9

RBBP7 N325D −6.0 5FXY Metastasis-associated protein MTA1 3.3

DDX17 V484M −5.9 3EX7 ATP 6.4

SPIN1 Y170C −5.9 7OCB Histone tail 2.4

WARS1 G163V −5.9 4J75 TRP-AMP 2.7

MAT2A S206F −5.9 7KCF SAM (S-adenosylmethionine) 2.5

KCNN2 I637F −5.8 6CNM K+ ion 2.7

ZMYND8 R333G −5.8 5Y1Z Actin-binding protein Drebrin (DBN1) 6.6

ACTC1 S340F −5.8 7TJ7 Fragmin (actin-binding protein) 4.7

RBBP4 R131C −5.8 4PSX Sulfate ion 2.6

PSMA2 G125D −5.8 5L4G Proteasome subunit PSMA6 2.9

MAP2K4 S262N −5.8 7JUY ANP 2.6

NFKB2 W270R −5.8 7VUQ

CALM1 D24Y −5.8 6B8Q Ca2+ ion 2.0
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Thirdly, the candidates are functionally similar to known DD genes 
across a wide range of features that are known to distinguish these 
genes from those not associated with DDs (Fig. 6d, Supplementary 
Table 8 and Extended Data Fig. 8). For example, candidate genes are 
expressed significantly more in the developing fetal brain compared 
to non-DD genes, even those already known to be associated with DDs 
(P < 0.001); they have similar enrichment for molecular function and 
biological processes47,48 as known DD genes, such as chromatin organi-
zation (GO:0006325) and nervous system development (GO:0007399) 
(Supplementary Table 9); 50 out of 123 novel genes are associated with 
a complex involved in development and survival of neurons (NRTK1); 
16 out of 123 with the SWI/SNF chromatin remodeling complex associ-
ated with neurodevelopmental disorders49,50; and another 15 are in ion 
channel complexes51. Of the 24 remaining genes with no connectiv-
ity, two-thirds are significantly enriched in annotations for neuronal 
development and differentiation (Supplementary Table 9). Addition-
ally, novel candidate genes are enriched for essential genes measured 
both by homology to mouse experiments52, by large-scale CRISPR 
screens53, somatic driver genes54 and haploinsufficient genes55, and are 
significantly depleted of genes that are tolerant to homozygous LoF.

These lines of evidence, taken with the low potential to overpredic 
severity in the general population (above), support these novel genes’ 
candidacy for their involvement in SDDs.

Pinpointing likely causal de novo variants without  
parental genomes
Finally, we tested whether popEVE can identify likely causal variants 
from the child’s genome alone, without parental data. We analyzed rare 
(MAF < 0.01) inherited and de novo variants in 9,859 individuals from 
the Deciphering Developmental Disorders6 (DDD) cohort. For 2,700 of 
these cases, a causal missense DNM is expected. Among 513 individuals 
with a popEVE-severe de novo missense, 98% had this variant ranked 
as their most deleterious. Selecting the top-scoring variant per person 
still recovers 95% of genes identified by thresholding de novo variants 
alone. Compared to other models, popEVE more reliably ranks causal 
de novo mutations above all rare inherited missense variants in the 
same patient (Fig. 7a and Extended Data Fig. 7f). This highlights pop-
EVE’s clinical utility: when a likely causal de novo variant is present, it 
will more often be ranked as the most deleterious, outperforming all 
other models across the proteome.

With respect to new candidates that may be inherited, in addition 
to identifying DNMs without parental data, we found 409 inherited 
variants across 209 genes predicted to be severely deleterious; only 
one appears in the UKBB (Fig. 3f). These genes show strong enrichment 
for physical interactions (two-sided t-test, P = 0; Extended Data Fig. 9c 
and Supplementary Table 10) and functional similarity to known DD 
genes (Fig. 6d). Among them, 36 are already associated with DD, and 
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29 overlap with novel genes from the full SDD cohort. Case variants in 
these candidates show popEVE score distributions comparable to those 
in known DD genes (Fig. 7c). While many cases are likely explained by 
missense DNMs, inherited variants may also contribute. Notably, in 
the original trio analysis, 84% of flagged variants were inherited, the 
majority being missense mutations56.

Discussion
As patient sequencing becomes standard, with growing accessibility 
worldwide, there is increasing demand for broadly applicable variant 
interpretation tools—even for cases involving diseases as rare as one 
patient. While standard burden analyses work when enough individuals 
share a rare disease, many ultra-rare conditions lack sufficient cases. 
This work introduces a model designed to support genetic diagno-
sis in such cases. Recent years have seen a rise in models predicting 
whether variants are benign or pathogenic, but most overlook dif-
ferences in severity and penetrance. Here, we propose that treating 
pathogenicity as a spectrum can be more informative in certain con-
texts. Capturing this spectrum requires a model that ranks variants 
both within and across genes, that is, a true proteome-wide model. 
While several models offer genome-scale predictions, popEVE is, to 
our knowledge, the first designed specifically to calibrate scores to be 
comparable across genes, making it the first, albeit simple, model of 
the human proteome. Advancing whole-proteome modeling requires 
several key developments. A natural next step is to incorporate pro-
tein–protein interactions, just as protein-level models evolved from 
position-independent to interaction-aware frameworks. Another clear 
limitation of current models, including popEVE, is their inability to 
evaluate nonsense or truncating mutations and, thus, are unable to 
compare their severity to missense variants. To our knowledge, no 
unified model of LoF and missense variants with sufficient predictive 
power currently exists. However, popEVE’s modular design makes it 
compatible with such extensions, as its human proteome calibration 
is agnostic to the variant type and can be easily expanded. Despite the 
simplicity of popEVE, it presents multiple opportunities for diagnosis 
and broader exploration of disease genetics. We identify novel DD gene 
candidates undetectable by enrichment-based methods in a cohort 
of this size; 104 have flagged variants in only one or two individuals. 
Functional, structural and network analyses show these genes are 
closely linked to known DD genes, and their variants often occur in 
functionally critical regions, providing further evidence that these vari-
ants potentially give rise to genetic disorders. More broadly, the model 
predicts that a large number of genes are capable of causing severe 
phenotypes, implying that there are still many genetic disorders yet to 
be identified or even seen. A similar conclusion is reached in Kaplanis 
et al.8 through a distinct approach. Here, we go further by identifying 
specific genes and high-risk variants. Finally, we note the detrimental 

impact of building large-scale proteome or genome models; we are 
reaching a point where the energy and computational consumption 
of developing and training these models is costly, both financially and 
environmentally57. In this work, we sought to use a modular approach, 
enabling us to repurpose previous models and update components 
of the model with future developments at a minimal computational 
cost. Deep learning strategies with these properties are currently 
scarce, and we urgently need more techniques that lend themselves 
to reducing computational costs or have components that can be 
readily reused or recycled.
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Methods
Statistics and reproducibility
This study is based on analysis of large-scale sequencing and variant 
annotation datasets (UniRef58, UKBB17, gnomAD18, ClinVar59, Prote-
inGym22 and DD cohorts, including DDD6, GeneDx8, Radboud8, SPARK36 
and SSC36). No statistical method was used to predetermine sample 
size; all available data from each cohort or resource were included in 
the analyses. No data were excluded from the analyses unless explicitly 
stated in the Methods (for example, sibling pairs with shared de novo 
variants, or genes with insufficient coverage in UKBB). The experiments 
were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment. Reproducibility was 
assessed by benchmarking across multiple independent datasets (Clin-
Var, deep mutational scans, population sequencing cohorts and DD 
cohorts) and by comparing results with previously published models. 
All code and trained models are publicly available (‘Code availability’), 
ensuring that analyses can be reproduced.

Data acquisition
Multiple sequence alignments. Following previously published 
protocols60,14, the EVCouplings pipeline61, which builds on the profile 
HMM homology search tool Jackhmmer62, was used to build multiple 
sequence alignments (MSAs), in which sequences were obtained from 
the UniRef100 database of non-redundant protein58, downloaded in 
March 2022.

Human variation data
Variants from the UKBB17 500k release were annotated using VEP 
GRCh38 RefSeq and a custom RefSeq annotation built from NCBI gen-
ebank files to maximize the number of variants for pre-existing models. 
Variants were filtered for genotyping quality across all samples, and 
annotations were filtered based on matching between the RefSeq ref-
erence sequence and transcript sequences. When analyzing variants 
seen in the UKBB outside of training, we removed genes in which less 
than 95% of UKBB participants had at least 10× coverage63.

DD cohorts. All cohorts included in this study obtained written, 
informed consent from all participants or, if the participants were 
minors or lacked capacity, from their parents or legal guardians, in 
accordance with relevant institutional and national ethical guidelines.

SDD metacohort. De novo mutations from a metacohort composed 
of subjects from the DDD study, GeneDx and Radboud Medical Center 
were acquired from a previous publication8 (n = 31,058). Quality filter-
ing was performed by the respective centers as described in the sup-
plement of the original publication8. The variants were re-annotated 
with VEP using GRCh37 RefSeq and custom mapping based on NCBI 
RefSeq assembly mapping files.

Autism spectrum and unaffected siblings metacohort. De novo 
mutations from SFARI’s SPARK and SCC cohorts (the other two cohorts) 
were acquired from previously published work36 (n = 5,764). The vari-
ants were re-annotated with VEP using GRCh37 RefSeq and custom 
mapping based on NCBI RefSeq assembly mapping files. Sibling pairs 
with shared de novo variants were discarded.

DDD cohort. Variants from WES for the DDD cohort, a subset of the 
SDD metacohort (n = 9,859), were re-annotated with VEP using GRCh37 
RefSeq and custom mapping files. Variants were filtered by quality 
based on the filters used in the previously published SDD metacohort8.

ClinVar benign and pathogenic variants. To assess predictive per-
formance, we used two sets of clinically labeled variants from the 
ClinVar public archive59: the 2019 and 2020 sets curated in a previous 
publication23.

Deep mutational scans from ProteinGym. For assessing the pre-
dictive performance based on correlation with high-throughput 
functional assays (otherwise known as deep mutational scans or 
multiplexed assays of variant effects), we consider the human subset 
of ProteinGym22, which is thought to be clinically relevant. As refer-
ence sequences must have mappings to the human reference genome 
GrCH38, we do not have sequence matches for all available assays. Thus, 
the resulting test set consists of 23 assays across 18 proteins, so a mod-
est expansion of the set considered in the previous work11.

Model building
Overview of modeling strategy. From a methodological perspec-
tive, our goal is to rank the severity of genetic variant effects across an 
individual’s proteome. To achieve this goal, we developed a probabil-
istic model trained on protein sequence data from both diverse spe-
cies (UniRef100) and human populations (UKBB or gnomAD). These 
datasets offer complementary advantages: cross-species sequences 
reflect millions of years of evolution, revealing conserved patterns 
linked to structure and function11, while human exome data captures 
population-specific constraint at the gene level. By combining both, 
our model aims to accurately predict variant impact across the pro-
teome at single-residue resolution.

In the following sections, we first introduce the models (referred 
to here as evo models) used for identifying patterns of conservation 
across diverse organisms. These models provide a ‘fitness’ score for a 
given sequence of interest by obtaining an estimate for the log odds:

σ = log ( p(x)
p(xref)

) , (1)

where x represents the sequence of interest and xref is the reference 
sequence.

We introduce popEVE, a model that predicts the presence or 
absence of a variant in the human population based on input fitness 
scores from underlying models. It produces a calibrated score that 
effectively rescales and ensembles these inputs, enabling comparison 
of variant effects across different proteins.

Modeling individual proteins using evolutionary data. Recent work 
has shown that unsupervised models trained on protein sequence 
distributions across diverse species can distinguish benign from 
pathogenic variants in known disease genes, performing compara-
bly to functional assays11,64. We use two subtypes of such models: an 
alignment-based model, which is a variational autoencoder, trained 
on MSAs of individual genes; and an alignment-free model, inspired by 
large language models, trained on a full protein database (UniRef90). 
Below, we summarize each approach.

The Bayesian variational autoencoder (EVE). Variational autoencoders 
(VAEs)65,66 are a class of latent variable models that have been shown to 
be effective at capturing high-dimensional distributions in computer 
vision67,68, natural language processing69 and more. The assumption 
underlying a VAE is that the observed high-dimensional distribution is 
generated by a much smaller number of hidden (also known as latent) 
variables zi. The generative story is thus:

z ∼ 𝒩𝒩(0, ID)

p(xα
i
|z,θ) = softmax(( f θ(z))αi ) ,

(2)

where xα
i

 is an indicator function for the presence of amino acid α at 
position i, and the ‘decoder’ fθ(z) is modeled with a fully connected 
neural network, with spherical Gaussian prior for the parameters θ. In 
words, the VAE models the conditional probability of seeing the amino 
acid α at position i, given the latent variables z. Parameter inference is 
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achieved by the use of amortized inference, where we model the dis-
tribution q(z∣xij, θ) with another fully connected neural network, often 
referred to as the encoder. In previous work11 we found a symmetric 
relationship between encoder and decoder to work well with three 
layers, consisting of 2,000–1,000–300 and 300–1,000–2,000 nodes, 
respectively.

To score a sequence, we use the evidence lower bound (ELBO), 
which is a lower bound on the log-marginal likelihood p(x):

ELBO(x) = Neff.𝔼𝔼p(x)

[𝔼𝔼q(θp),q(z|x) (logp(x|z,θp)) − DKL(q(z|x,ϕp) ∥ p(z))] − DKL(q(θp) ∥ p(θp))
(3)

where Neff = ∑N

n=1 w
C
xn

 and wCxn is defined in equation (5). The fitness  
score is then simply

σ = log
p(x|θp)
p(xref|θp)

≈ ELBO(x) − ELBO(xref) (4)

Sequence reweighting. All models used in this work make the false 
assumption that the training data is independently and identically 
distributed. This independently and identically distributed assump-
tion breaks down owing to phylogenetic and ascertainment biases. 
The fact that the VAE is trained on aligned data presents an opportunity 
to correct for these two biases with sequence reweighting. Following 
the approach described in previous work70, we re-weight each protein 
sequence xi from a given MSA according to the reciprocal of the num-
ber of sequences in the corresponding MSA within a given Hamming 
distance cutoff, T.

wCxn =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N

∑
m = 1

m ≠ n

�[Dist(xn,xm) < T ]

⎞
⎟
⎟
⎟
⎟
⎟
⎠

−1

(5)

where N is the number of sequences in the MSA, and bold, lowercase x 
represents a protein sequence, indexed by subscript Latin indices. As 
in previous work60, we set T = 0.2 for all human proteins.

Masked language model (ESM-1v). The transformer architecture has 
enabled the training of single, alignment-free models of essentially all 
known proteins. In this work, we make use of ESM-1v31, which is trained 
on UniRef90.

ESM-1v31 is a high-capacity 650 million parameter language model 
that uses a form of self-supervision known as masking. During train-
ing, each sequence has a randomly sampled fraction of its amino acids 
replaced with a ‘mask’ token, and the network is then trained to predict 
the amino acids that have been masked. For each masked amino acid, 
the negative log likelihood of the missing amino acid, conditioned on 
the sequence context, is independently minimized.

ℒ = 𝔼𝔼x∼X𝔼𝔼M ∑
i∈M

− logp(xi|x/M) . (6)

Hence, for the model to successfully perform this task, the depend-
encies between the masked amino acid and the unmasked sequence 
context must be learned.

Estimating variant-level constraint in humans using Gaussian 
processes
The models described above perform well for ranking variants within 
a given gene but are not effective at comparing variants across genes 
(Fig. 1 and Supplementary Table 1). This limitation is expected, 

particularly for alignment-based models, which are trained inde-
pendently for each coding region. Although several models provide 
genome-wide scores (for example, Fig. 2e), none have been explicitly 
designed to rank variant severity across the proteome. To address this 
gap, we introduced popEVE, the first model aimed at proteome-wide 
comparison of missense variant effects.

Similar to above, we define the evo score from one of the evo 
models, which we index A, with A ∈ {1, 2}, as the log odds between the 
sequence of interest x and some reference sequence xref:

σA = log ( pA(x)
pA(xref)

) . (7)

In what follows, sequences that differ from the reference sequence by 
a single amino acid substitution have a special role, so it is convenient 
to define (σα

i
)A
n

 as the score from model A for a protein sequence, which 
differs from the reference xrefn  sequence for protein n solely by having 
amino acid α at position i.

We expect the probability of observing a sequence in the pop-
ulation to depend, in a fairly simple manner, on the score from the 
underlying evo models. We adopt a simple Bayesian, non-linear, 
non-parametric approach to modeling this relationship, with the use 
of a Bernoulli likelihood and a latent Gaussian process. Specifically, we 
model the presence or absence of the variant in the UKBB as:

pAn( yαi |σ
αA
in
) = Ber (yα

in
|φ( fAn(σαAin ))) (8)

where yijk ∈ {1,0} indicates the presence or absence of a variant in the 
UKBB, the link function φ (⋅) is the inverse logit function (also referred 
to as the logistic function) φ(z) = exp(z)(1 + exp(z))−1 and the function 
fAn(σ) is drawn from a Gaussian process prior:

f(σ) ∼ GP(m(σ),𝒦𝒦𝒦σ,σ′)), (9)

with zero mean function m(σ) = 0 and radial basis function kernel

𝒦𝒦(σ,σ′) = exp (−γ(σ − σ′)2) . (10)

The inferred function fAn(σ) can be thought of as a new fitness score. 
The intuition is that by modeling the amount of variation seen per 
protein in the UKBB or gnomAD, fAn(σ) it essentially rescales the evo 
score σAn to account for the degree of constraint acting on a per-variant 
basis in the population, and how that constraint depends on σAn; thus 
resulting in a score that can rank the pathogenicity of variants across 
different coding regions.

Efficient function inference by restoring conjugacy with Pólya- 
gamma data augmentation. For each protein of interest, indexed n, 
and each underlying evo model, indexed A, we seek to infer the func-
tions fAn. To do so, we consider the scores of all possible single amino 
acid substitutions in that protein and their corresponding labels yα

in
, 

indicating if that variant has been observed, or not, in the UKBB  
(we also provide a version of the model trained on gnomAD instead  
of the UKBB). Dropping the indices n and A for compactness, we  
denote the training data as the set of scores σ = [σ11,… ,σ19

L
] ∈ ℝN  and 

y = [y1,… , yN] ∈ {0, 1}N , where L is the number of amino acids in the 
protein and N = 19L is the total number of possible single amino acid 
substitutions. Let f = [f1, …, fN] be the function values corresponding to 
the input σ, then equation (8), together with the Gaussian process prior 
for f, implies:

p( f|y,σ) ∝ p( y| f )p( f |σ) , (11)

where p(f|σ) = 𝒩𝒩𝒩f|0,KNN), with KNN denoting the kernel matrix evaluated 
at the training points. Therefore, in contrast to models with a Gaussian 
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process prior and a Gaussian likelihood, inference is analytically intrac-
table because the Gaussian prior is not conjugate to the Bernoulli 
likelihood.

One appealing approach to overcoming this issue is to introduce 
additional latent variables that restore conjugacy. Following previous 
work71, we introduce the auxiliary variables ω and define the augmented 
likelihood to factorize as:

p( y,ω) = p( y| f,ω)p(ω) (12)

The goal then is to find a prior p(ω) to satisfy two properties: that when 
marginalizing out ω, the original model is recovered; and the Gaussian 
prior p(f) is conjugate to the likelihood p(y∣f, ω). These conditions are 
satisfied by the Pólya-gamma distribution, which may be thought of 
as an infinite convolution of Gamma distributions; that is, ω ~ PG(b, 
c), where

ω = 1
2π2

∞
∑
m=1

gm

(m − 1
2
)
2
+ ( c

2π
)
2 , (13)

and gm ~ Γ(b, 1). Alternatively, we can define the Pólya-gamma distribu-
tion in terms of its moment generating function (these two definitions 
are related by the Laplace transform):

𝔼𝔼PG[exp(−ωt)] =
1

coshb (√
t

2
)
. (14)

This second definition is useful, as it suggests that the logistic link func-
tion may be expressed in terms of Pólya-gamma variables

φ(zi) = exp(zi)
(1+exp(zi))

=
exp( zi

2
)

2 cosh( zi
2
)

= 1
2
∫ exp ( zi

2
− z2

i

2
ωi)p(ωi)dωi .

(15)

Hence, substituting zi = yif(σi), we obtain

p( y|ω, f ) ∝ exp ( 12y
⊤f − 1

2 f
⊤Ωf) , (16)

where Ω = diag(ω) is the diagonal matrix of the Pólya-gamma variables. 
This augmented likelihood is conjugate to p(f) as required.

Developed in prior work72, once conditional conjugacy is restored, 
it is possible to derive closed-form updates for variational inference 
with natural gradients and a learning rate close to one, enabling highly 
efficient inference of f.

Making the models scale with inducing points. Inference in GPs with 
a Gaussian likelihood, while exact, take 𝒪𝒪(N3) time, and hence additional 
methods are required to perform inference when the training data are 
large. One such method is to learn a ‘summary’ of the data with M ≪ N 
pseudo inputs, otherwise known as inducing points73, and hence reduce 
the complexity to 𝒪𝒪(M3). Following the prior work72, we introduce M 
additional variables u = [u1, …, uM], where the function values of the GP 
f are related to u by

p( f|u) = 𝒩𝒩𝒩 f |KNMK−1MMu, ̃K)

p(u) = 𝒩𝒩𝒩u|0,KMM) ,
(17)

where kMM is the kernel matrix resulting from evaluating the kernel at 
the M inducing points, KNM is the kernel between the training points 
and the inducing points and ̃K = KNN − KNMK−1MMKMN.

Hence, the complete joint distribution of our model is given by

p( y,ω, f,u) = p( y|ω, f )p(ω)p( f |u)p(u) . (18)

Implementation. This model is implemented in GPyTorch74 and is 
publicly available through a dedicated GitHub repository.

Ensembles of models with only partially intersecting domains. 
Ensembles of models can often achieve a performance similar to, and 
sometimes even stronger than, the strongest constituent model75. Our 
setup provides a novel opportunity to build a highly performant ensem-
ble model by incorporating the scores from multiple evo models. By 
training a separate Gaussian process model for each evo model, we 
naturally create directly comparable scores between models, thereby 
enabling the typical, but potentially problematic, standardization step 
to be bypassed entirely. We define the popEVE score ̄σ  to simply be the 
mean of the means of the posteriors of each GP, for each evo model 
whose domain contains the variant of interest.

̄σαij =
1
QA
ij

Qα
ij

∑
A=1

𝔼𝔼 [fA
j
(σα
i
)] , (19)

where QA
ij

 is the number of evo models capable of making a prediction 
for the amino acid substitution α at position i in protein j.

Performance assessments
We evaluated key properties of our model with a number of clinically 
relevant tasks and compared its performance with pre-existing models, 
whose scores were downloaded from dbNSFP (v.4.7)76 (we use the same 
set of models that were analyzed in a previous publication23).

Comparing model performance within proteins. To assess model 
performance at ranking the pathogenicity of variants within the same 
gene, similar to prior work11, we consider two tests: correlation of model 
predictions with deep mutational scans and ability to predict benign 
and pathogenic labels in ClinVar.

To assess concordance with deep mutational scans, we compute 
the Spearman’s correlation between the model score and reported 
experimental fitness (for example, expression) (Extended Data Fig. 2). 
To assess the ability to separate benign from pathogenic variants, we 
made use of two curated sets of ClinVar labels as described in ‘ClinVar 
benign and pathogenic variants’. We computed the area under the 
receiver operating characteristic curve for all genes with at least five 
benign and five pathogenic labels. With these sets, we were able to 
assess the performance across 50 and 31 proteins and in 2019 and 2020 
datasets, respectively (Extended Data Fig. 1).

Comparing model performance across proteins. Ranking clinical 
pathogenic variants by severity. To evaluate how well models rank 
clinical pathogenic variants by severity, we assembled a set of Clin-
Var 1+ star variants linked to phenotypes with childhood or adult 
onset or death, based on OrphaNet annotations35. For each model, 
we identified the 5th percentile score threshold for benign ClinVar 
variants and used this as a reference. We then compared the log odds 
of childhood-versus-adult-associated pathogenic variants falling 
below this threshold. Pairwise z-scores and P values were computed 
to assess whether model differences were statistically significant. Mod-
els focused solely on pathogenicity are expected to perform poorly, 
whereas those capturing variant fitness and phenotypic severity should 
distinguish between childhood and adult onset variants.

Distinguishing SDD cases from unaffected controls. We next evaluated 
the model’s ability to rank variant severity across the proteome and 
across individuals. To do so, we constructed a test set from de novo 
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variants found in patients with SDDs and unaffected siblings of indi-
viduals with autism spectrum disorder. The goal was to determine 
whether the model could distinguish cases carrying likely pathogenic 
de novo variants from controls with variants not expected to contribute 
to disease.

We defined ‘cases’ as individuals with at least one de novo variant 
in a known DD gene (DDG2P, downloaded January 2023), following the 
approach of a previous publication8. However, only a subset of these 
variants is expected to be truly pathogenic. Based on an observed 
excess of 2,982 de novo missense variants among 5,625 cases, we 
estimate that approximately 53% carry a causal variant. Accordingly,  
we adjusted the maximum achievable recall to reflect this expected 
upper bound.

This test set (Supplementary Table 5) allows us to benchmark 
model performance in a realistic clinical setting. popEVE outperforms 
all current state-of-the-art models for pathogenicity prediction, 
including the underlying evolutionary models it builds upon (Fig. 3b, 
Extended Data Fig. 9a and Supplementary Table 1).

Assessing overprediction of deleterious variants in the general popu-
lation. We evaluated each model’s ability to recover SDD cases from 
de novo mutations or WES while minimizing false positives in the 
general population. For each model and score threshold, we com-
puted the percentage of individuals in the UKBB and SDD metacohort 
(or DDD sub-cohort) with at least one variant as or more pathogenic 
(Fig. 2h,k and Supplementary Fig. 10d,f), comparing the cumulative 
distributions between cases and controls. For the SDD metacohort, 
we used individuals with de novo missense variants in genes previ-
ously implicated by DeNovoWEST8, representing high-confidence 
diagnoses.

To assess prioritization of causal variants, we calculated the 
fraction of DDD individuals whose de novo variant was ranked more 
pathogenic than all inherited variants at each threshold. At −5.056, 513 
individuals had a qualifying variant, and in 98% of cases, it ranked as the 
most deleterious. The rate of decay reflects each model’s genome-wide 
ranking ability.

Analysis of patient data
We explored two approaches to analyzing de novo mutations from a 
metacohort composed of subjects from the DDD study, GeneDx and 
Radboud Medical Center in the hope that popEVE may provide novel 
evidence for the genetic diagnosis of currently unsolved cases: burden 
testing of variants per gene across the full cohort, and per-patient direct 
case–variant association.

Direct case–variant association. Based on the set of de novo variants 
from cases and controls, we constructed a Bayesian Gaussian mixture 
model to determine a score cutoff as:

μ1 ∼ 𝒩𝒩(μ0,Σ0)

μ2 ∼ 𝒩𝒩(μ0,Σ0)

λ1 ∼ Lognormal (μλ,σλ)

λ2 ∼ Lognormal (μλ,σλ)

π ∼ Dirichlet (α)

For i = 1,… ,N ∶

ai ∼ Categorical (π)

xi ∼ 𝒩𝒩(μai , λai )

(20)

where μ0 = −3.6 and Σ0 = 0.7. We then identified an uncertainty cutoff 
corresponding to a greater than 99.99% likelihood of being in the lower 
fitness distribution, ̄σ ≤ −5.056. We found that constructing the model 
with solely the de novo variants from the cases resulted in a similar 
threshold.

Using the threshold ̄σ ≤ −5.056, we searched the full DD cohort for 
individuals with at least one de novo missense variant below this score 
and no predicted LoF variants. For these individuals, we consider the 
identified missense variant a strong candidate for being causal. In 
addition to the high accuracy of the Gaussian mixture model, these 
variants show strong enrichment relative to the background mutation 
rate (Fig. 3d), further supporting their likely pathogenicity.

Gene-collapsing model. To compare with previous methods, we 
implemented gene-collapsing models for the SDD cohort following the 
DeNovoWEST framework8. For each gene, we estimated the probability 
of observing a total score ≥xobs by testing mutation counts (0 to N) until 
the Poisson likelihood, based on expected de novo mutation rates, fell 
near zero. Context-dependent mutation rates from Samocha et al. 
(2014)29 were used to estimate expected counts and sample variants. 
We ran 10,000 simulations per gene. To adjust for multiple testing, 
we also assessed the likelihood of observing a score ≥xobs anywhere in 
the proteome.

p(gene ) =
N

∑
n=0

P(n = ngene|λgene)P(xgene ≤ xobs|n)P(xproteome ≤ xobs|n) (21)

We selected our significance cutoff by dividing 0.05 by the total 
number of tests (or total number of genes or proteins we have mod-
eled): p < 0.05 / 18,395. We also performed gene collapsing on the 
unaffected controls using the same method.

Structural and functional analysis of deleterious mutations
Functional similarity of novel and known DD genes. We compared 
the functional properties of our novel genes with comparison to known 
DD genes37 across features known to differentiate DD genes from genes 
not associated with DDs, similar to previous work8. We calculated the 
enrichment of these variables in either our novel genes or known DD 
genes compared to non-DD genes (Fig. 6d, Extended Data Fig. 8 and 
Supplementary Tables 8 and 9).

For interactions, we selected protein–protein interactions 
(BioGRID77) enriched in known DD genes compared to non-DD genes. 
To ensure that these interactions are generalizable, we selected 
those that are significantly enriched in known DD genes (P < 0.05 
after Benjamini–Hochberg correction) and present in at least 10% 
of known DD genes (n > 223). Median expression, measured in reads 
per kilobase of transcript per million mapped reads, in the fetal brain 
was determined across samples from the Allen Brain Atlas78. For the 
relevant Gene Ontology terms Molecular Function and Biological 
Processes, we selected terms enriched in known DD genes compared 
to non-DD genes using DAVID79. To ensure these terms are generaliz-
able, we selected those that are significantly enriched in known DD 
genes (P < 0.05 after Benjamini–Hochberg correction) and present 
in at least 10% of known DD genes (n > 223). Haploinsufficient is a 
binary variable of genes with evidence of haploinsufficiency (dosage 
pathogenicity level three) from the ClinGen Dosage Sensitivity Map55; 
human essential is a binary variable of whether a gene was deemed 
essential in human cell lines based on CRISPR screens53; ACMG genes 
is a binary variable indicating whether a gene is a clinically actionable 
gene according to the American College of Medical Genetics and 
Genomics (v.2.0)80; somatic drivers is a binary variable of whether the 
gene is known to be a somatic driver gene81; mouse essential is a binary 
variable of whether a gene is essential in mice; that is, homozygous 
knockouts of that gene resulted in lethality52,82; and LoF tolerant is 
a binary variable of whether a gene is tolerant of homozygous LoF 
mutations in humans18.

Functional network. We created a functional gene network with 
123 de novo novel genes from popEVE (with a 99.99 threshold) and 
significant genes from DeNovoWEST8 using STRING83, as shown in 
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Extended Data Fig. 9a and Supplementary Table 10. We show edges 
from medium-confidence (0.4) experiments. Genes were denoted 
as previously discovered if they were already observed in DDG2P37 or 
DeNovoWEST.

Additionally, we used medium-confidence (0.4) experiment anno-
tations to calculate the average node degree of DDG2P genes and 
DeNovoWEST genes with and without our significant popEVE genes 
included, both from de novo analysis and no-trios analysis (Extended 
Data Fig. 9b). To determine the relative difference that the significant 
genes make versus a random set of genes, we performed t-tests 100,000 
times with random samples of genes from the whole human genome 
(with the known and popEVE genes excluded).

Manual structure analysis. From the 131 novel popEVE mutations, 
we individually investigated structures for the top 20 most predicted 
deleterious. We only analyzed cryo-electron microscopy or crystal-
lographic structures where our mutation is included in the resolved 
protein structure. To enhance our analysis, we prioritized structures 
that exhibited interactions with other proteins and/or ligands. This 
allowed us to capture and understand the potential consequences of 
these interactions. All distances listed were calculated with the distance 
function in PyMol.

Comparative analysis of protein–ligand interactions using a null 
model. We compared de novo variants from the SDD metacohort and 
inherited variants from the DDD subset against a null model, which 
calculated the distance from each position on the variant-containing 
chain to the nearest ligand. Resolved crystal structures were processed 
using the Evcouplings PDB reader, with distances computed using the 
Evcouplings compare package61. Z-scores were computed by subtract-
ing the mean chain-wide distance (excluding the variant site) from the 
variant-to-ligand distance. Variants were excluded if the chain length 
differed from the full protein length by more than two standard devia-
tions. Full results are in Supplementary Table 11.

Functional interactions in 3D structures for high-scoring patho-
genic variants. 3D structures of proteins with high-scoring path-
ogenic variants were retrieved by alignment to SIFTS database 
sequences84 using EVcouplings61 with one HMMER iteration62 and 
a 0.2 bits per residue threshold. A variant was considered to have 
evidence of functional interaction if, in any matched structure, its 
position contacted a non-self PDB entity within 8 Å, excluding water 
and common crystallographic additives (entity info from PDBe  
REST API40).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Interactive web viewer and downloads for popEVE scores are avail-
able at pop.evemodel.org. De novo variants from SDD cases and unaf-
fected controls were sourced from previous publications8,36. WES data 
from the DDD subset of the SDD cohort are available under controlled 
access from the European Genome–Phenome Archive (EGA; accession 
EGAC00001000282). Access is managed by the DDD Data Access 
Committee to ensure use is consistent with participant consent and 
ethical approvals. Researchers wishing to obtain the data should apply 
through the EGA portal, providing details of their research project, 
institutional affiliation and ethical approval. Population variants are 
from GnomAD (v.2) and UKBB.

Code availability
Code is available at Github (https://github.com/debbiemarkslab/pop-
EVE) and Zenodo (https://doi.org/10.5281/zenodo.17055823)85.
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Extended Data Fig. 1 | Performance summary for separating Benign/Likely 
Benign from Pathogenic/Likely Pathogenic ClinVar labels. Assessing the 
performance of popEVE and popular supervised and unsupervised variant  
effect prediction models on individual genes that have at least 5 benign and  
5 pathogenic variants from the ClinGen curation of a. ClinVar 2019 and b. ClinVar 
2020, using the area under the receiver-operating curve. The ClinGen dataset 

attempts to address data leakage in the estimation of performance of supervised 
methods by removing ClinVar variants used in training. This test lacks the 
resolution to distinguish state-of-the-art models. This is highlighted by the fact 
the ranking of AUCs in the ClinGen 2020 and ClinGen 2019 significantly changes. 
c. Breakdown of performance by gene.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Correlation of computational variant effect predicting 
models with high-throughput experimental assays. Assessing the performance 
of popEVE compared to popular supervised and unsupervised variant effect 

prediction models when compared to high-throughput functional assays on 
human genes (from ProteinGym), averaging a and across individual assays b.  
On average popEVE outperforms other models.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Correlation between EVE and Esm1v scores. Scores for a random sample of 1 million variants across the human proteome. Pearson correlation 
is low - 0.55 (p-value=0.0).

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | popEVE shows minimal population bias across diverse 
ancestries. The distribution of popEVE scores for rare variants (AF<0.01) is 
consistent across populations found in gnomAD, indicating that despite using 

primarily non-Finnish European subjects for score adjustment there is no 
population bias. Variants not seen any gnomAD population are in grey. The 99.9% 
percentile for each distribution is marked with an arrow.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Correlation between popEVE gene-level statistics 
and gene-level constraint measures. Pearson correlation between gene-level 
measures of constraint and EVE and popEVE minimum, maximum and mean 

score per gene. We find poor correlation between popEVE and gene-level 
constraint measures, except for MissenseZ and popEVE mean, with  
pearson = 0.61 (p-value = 0.0).
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Extended Data Fig. 6 | Odds ratios of ClinVar pathogenic variants in genes associated with premature death and onset. Odds ratios (threshold for each model set 
at 5th percentile of benign variants in ClinVar) for various models of ClinVar pathogenic variants (with at least 1 star curation rating) in phenotypes associated with (a) 
death and (b) onset in childhood versus adulthood.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | popEVE is better at separating developmental disorder 
cases from healthy controls than other state-of-the-art models. a. Extension 
of Fig. 2c with all models - popEVE is better at separating “diagnosed” SDD cases 
whose disorder is likely to be caused by a de novo missense variant (cases with 
at least one missense variant in a known developmental disorder gene) from 
controls than other state of art variant effect predictors with an average precision 
of 97%. b. Precision recall for “high-confidence diagnosed” SDD cases (at least 
one de novo missense in a gene discovered by DeNovoWEST in the same cohort). 
c. Precision recall for all cases vs controls. d. Extension of Fig. 2d with all models 

- popEVE recalls more SDD cases (with at least one missense variant in DNW-
discovered genes) without overpredicting pathogenicity in healthy controls 
from UKBB. While popEVE recalls 50% of these individuals for only 16% of the 
UKBB, the next best model, Alpha Missense, predicts 92% of UKBB has a variant as 
pathogenic as 50% of this SDD subset. e. Extension of Fig. 3b with all models - For 
each score threshold, we plot the percent of individuals with a de novo missense 
variant ranked as more deleterious than rare inherited variants. In individual 
cases, popEVE is better at ranking de novo mutations as more deleterious than 
rare inherited variants (MAF<0.01) than other models.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02400-1

Extended Data Fig. 8 | Functional enrichment of known and novel genes. 
Novel (from de novo SDD case variants and whole exome DDD variants) 
and known developmental disorder genes (from literature and previously 

discovered in the SDD cohort) show similar enrichment in properties known to 
differentiate known DD-genes from non-developmental disorder genes (95% CI 
from bootstrapping shown).

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Novel genes increase node connectivity of known 
developmental disorder genes. a, Novel popEVE discovered genes are 
embedded into the network of previously-discovered disease associated 
genes from DDG2P and DeNovoWEST. Taking the set of 99.99 confidence 
threshold popEVE genes, we built a network using STRINGdb (‘experiments’ 
and ‘coexpression’ at a medium 0.4 score threshold). Colored nodes are novel 
discoveries and white nodes are known disease-associated genes. These nodes 
were clustered into four clusters using k-means clustering. b, When added to a 

network of know developmental disorder genes, novel genes from the full SDD 
meta-cohort had a 42% increase in node degree as compared to random sets of 
the same number of genes which saw an average of 9% (with p < 0.000, t-test).  
c, When added to a network of know developmental disorder genes, novel  
genes from the DDD sub-cohort had a 53% increase in node degree as compared 
to random sets of the same number of genes which saw an average of 19%  
(with p < 0.000, t-test).

http://www.nature.com/naturegenetics
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